Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerical modeling analysis was used to assess the suitable electrical resistivity arrays for the characterization of geological structures, including dyke, horst, graben, sub-vertical, and vertical structures. These geological structures usually make up the aquifers interested in the hydrogeological evaluation of crystalline basement terrains. Six electrode configurations, including Wenner alpha (α), Wenner beta (β), Wenner gamma (γ), Schlumberger array, dipole-dipole array, and pole-dipole array, were used to assess the geological structures for groundwater exploration. The synthetic models of the geological structures were generated using RES2DMOD code, and 5% noise was added to all the models. The generated models were inverted using the RES2DINV code. The results show that the most suitable arrays for dyke and graben structures are Wenner alpha, while Wenner beta is the most suitable for the horst structure. The Schlumberger array was the best for both sub-vertical and vertical structures. This study has demonstrated the efficacy of numerical modeling in assessing the best resistivity arrays for 2D electrical resistivity imaging for groundwater exploration prior to geophysical field investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123229 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e09427 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!