With the current COVID19 pandemic, we have to weigh human life, prosperity, and value, while implicitly acknowledging that controlling case spread and mortality is a challenge. Identifying COVID19-infected patients and disconnecting them to avoid COVID transmission is one of the most difficult tasks for clinicians. As a result, figuring out who infected with covid19 is crucial. COVID19 is identified using a 4-6-hour reverse transcription-polymerase chain reaction (RT-PCR). Another way to detect Coronavirus early in the disease process is by using chest X-rays (CXR).We extracted characteristics from chest X-ray images using VGG16 and ResNet50 deep learning algorithms, then classified them into three groups: viral pneumonia, normal, and COVID19. We ran 15,153 images through the models to see how accurate they were in real-world situations. For detecting COVID19 cases, the VGG16 model has an average accuracy of 89.34 %, whereas ResNet50 has an accuracy of 91.39 %. When utilizing deep learning to identify COVID19, however, a larger dataset is necessary. It has the desired effect of detecting situations accurately.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117408 | PMC |
http://dx.doi.org/10.1016/j.matpr.2022.05.199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!