Chronic kidney disease (CKD) has a worldwide prevalence of higher than 10% with an increasing mortality rate. As it involves the deterioration of renal function, it represents a serious risk to human health and, if left untreated, significantly lowers the quality of the patient's life. CKD is characterized by renal fibrosis. Studies have shown that transforming growth factor β1 (TGF-β1), a key driving factor of renal fibrosis, is closely related to the activation of renal fibrosis pathways such as endoplasmic reticulum stress (ERS). Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid derivative, can effectively inhibit endogenous ERS. Here, we explored the effects and actions of TUDCA on renal fibrosis by establishing a renal mesangial cell (RMC) model. The RMC was stimulated with TGF-β1, and PCR and western blotting were used to detect the expression of ERS-related chaperone proteins and fibrotic indicators. The expression of glucose-regulated protein 78 (GRP78) was silenced in RMC cells to investigate the role of GRP78 in renal fibrosis. Finally, PCR and western blotting were used to detect the effects of TUDCA on the expression of GRP78, C/EBP homologous protein (CHOP), α-smooth muscle actin (α-SMA), and fibronectin (FN) in the TGF-β1-stimulated RMCs. The results showed that TUDCA significantly downregulated TGF-β1-induced levels of GRP78, CHOP, α-SMA and FN in RMCs. In addition, downregulation of GRP78 inhibited the expression of FN and α-SMA in the RMCs. In conclusion, downregulation of GRP78 and CHOP expression is one of the mechanisms by which TUDCA inhibits TGF-β1-induced renal mesangial cell fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121212PMC
http://dx.doi.org/10.3892/etm.2022.11359DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
24
renal mesangial
12
renal
10
tauroursodeoxycholic acid
8
inhibits tgf-β1-induced
8
tgf-β1-induced renal
8
endoplasmic reticulum
8
reticulum stress
8
mesangial cell
8
pcr western
8

Similar Publications

Aim/introduction: Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence.

View Article and Find Full Text PDF

Background: Traditional 2-dimensional (2D) ultrasound is a noninvasive method in the assessment of glomerular disease. Ultrasound elastography shows promise in evaluating renal fibrosis, which plays a key role in glomerular disease progression. However, research in pediatric cohorts is limited.

View Article and Find Full Text PDF

Objective: This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy.

Methods: A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation.

View Article and Find Full Text PDF

Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

The role of macrophages remains incompletely understood in kidney injury and repair. Their plasticity offers an opportunity to polarize them towards mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney macrophages augmented their AIF-1 expression after injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!