Previous studies of polymer motion at solid/liquid interfaces described the transport in the context of a continuous time random walk (CTRW) process, in which diffusion switches between desorption-mediated "flights" (i.e., hopping) and surface-adsorbed waiting-time intervals. However, it has been unclear whether the waiting times represented periods of complete immobility or times during which molecules engaged in a different (e.g., slower or confined) mode of interfacial transport. Here we designed high-throughput, single-molecule tracking measurements to address this question. Specifically, we studied polymer dynamics on either chemically homogeneous or nanopatterned surfaces (hexagonal diblock copolymer films) with chemically distinct domains, where polymers were essentially excluded from the low-affinity domains, eliminating the possibility of significant continuous diffusion in the absence of desorption-mediated flights. Indeed, the step-size distributions on homogeneous surfaces exhibited an additional diffusive mode that was missing on the chemically heterogeneous nanopatterned surfaces, confirming the presence of a slow continuous mode due to 2D in-plane diffusion. Kinetic Monte Carlo simulations were performed to test this model and, with the theoretical in-plane diffusion coefficient of = 0.20 μm/s, we found a good agreement between simulations and experimental data on both chemically homogeneous and nanopatterned surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.6b00183 | DOI Listing |
Commun Mater
January 2025
Physik-Institut, Universität Zürich, Zürich, Switzerland.
The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
School of Automotive Studies, Tongji University, Shanghai 201804, China.
Proton exchange membranes (PEMs) are dominated by semicrystalline structures because highly pure crystals are still challenging to produce and control. Currently, the development and application of PEMs have been hindered by a lack of understanding regarding the effects of microstructure on proton and heat transport properties. Based on an experimentally characterized perfluoro sulfonic acid membrane, the corresponding semicrystalline model and the crystal model contained therein were constructed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Ionic covalent organic framework (COF) nanosheets are becoming increasingly attractive as promising two-dimensional (2D) materials for proton transport due to their ionic functionality and tailor-made pores. However, most synthetic methods for nanosheets rely on surface-assisted methods or phase transformation often yielding nanosheets with low aspect ratios. In this study, we present a bottom-up approach utilizing an oil-oil-water triphase system to achieve the large-scale synthesis of ionic COF nanosheets.
View Article and Find Full Text PDFNanophotonics
January 2024
School of Electrical Engineering, Hanyang University, Ansan 15588, South Korea.
Two-dimensional (2D) layered materials exhibit strong light-matter interactions, remarkable excitonic effects, and ultrafast optical response, making them promising for high-speed on-chip nanophotonics. Recently, significant attention has been directed towards anisotropic 2D materials (A2DMs) with low in-plane crystal symmetry. These materials present unique optical properties dependent on polarization and direction, offering additional degrees of freedom absent in conventional isotropic 2D materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!