One-Step Fabrication of a Multifunctional Aggregation-Induced Emission Nanoaggregate for Targeted Cell Imaging and Enzyme-Triggered Cancer Chemotherapy.

ACS Macro Lett

Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.

Published: April 2016

A novel multifunctional aggregation-induced emission (AIE) nanoaggregate for targeted imaging and enzyme-triggered chemotherapy was successfully fabricated via a one-step assembly. In this system, a quaternary ammonium-modified tetraphenylethene derivative (QA-TPE) acted as the AIE fluorophore as well as the chemotherapeutic agent, and a water-soluble acidic polysaccharide, hyaluronic acid (HA) acted as the aggregation-inducing scaffold, AIE turn-on agent, and targeting agent for CD44 receptor-mediated cancer cells. More importantly, HA endowed the QA-TPE/HA nanoaggregate both good biocompatibility and hysteretic chemotherapy activity, which were achieved by controlling the release of QA-TPE using the endogenous HAase in CD44 receptor-mediated cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.6b00154DOI Listing

Publication Analysis

Top Keywords

multifunctional aggregation-induced
8
aggregation-induced emission
8
nanoaggregate targeted
8
imaging enzyme-triggered
8
cd44 receptor-mediated
8
receptor-mediated cancer
8
cancer cells
8
one-step fabrication
4
fabrication multifunctional
4
emission nanoaggregate
4

Similar Publications

Background: Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.

Results: The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing.

View Article and Find Full Text PDF

Mechanochromic materials, known for their ability to change color in response to mechanical stimuli such as pressure, stretching, grinding, or rubbing, hold significant importance due to their diverse applications. In this study, we synthesized and characterized two novel pyridine-tethered imidazo[1,2-a]pyridine mechanoresponsive luminogens with appended tetraphenylethene, named GBY-10 and GBY-11. GBY-10 exhibited reversible mechanofluorochromism, while GBY-11 did not revert to its original color after solvent fuming.

View Article and Find Full Text PDF

The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer.

J Am Chem Soc

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.

View Article and Find Full Text PDF

A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy.

Light Sci Appl

January 2025

Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.

The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited.

View Article and Find Full Text PDF

In this study, we investigated the aggregation-induced delayed fluorescence (AIDF) properties of three luminogens - TN, TA, and TP. Our comprehensive theoretical analysis reveals a significant reduction in the Δ in their aggregated or solid-state, activating TADF, on a ∼μs time-scale. Additionally, these luminogens demonstrate two-photon excited anti-Stokes photoluminescence emission and improved photocurrent generation, attributed to their strong charge transfer characteristics and longer singlet exciton lifetimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!