Polystyrene (PS) that has been exposed to ultraviolet light (UV) undergoes partial dehydrogenation of the alkane polymer backbone which increases its surface energy. Exploiting this photochemistry, we exposed polystyrene films to UV light using a photomask to induce a patterned photochemical reaction producing regions in the film with differing surface energy. Upon heating the solid polymer film with the preprogrammed surface energy pattern to a liquid state, the polymer flows from the low surface energy unexposed regions to high surface energy exposed regions. This flow creates three-dimensional topography by the Marangoni Effect, which describes convective mass transfer due to surface energy gradients. The topographical features can be permanently preserved by quenching the film below its glass to liquid transition temperature. Their shape and organization are only limited by the pattern on the photomask.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mz300400pDOI Listing

Publication Analysis

Top Keywords

surface energy
24
surface
6
energy
6
patterning photochemically
4
photochemically directing
4
directing marangoni
4
marangoni polystyrene
4
polystyrene exposed
4
exposed ultraviolet
4
ultraviolet light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!