AI Article Synopsis

  • * This study examines two similar seabird species, the common diving petrel and the South Georgian diving petrel, showing that their resource use changes depending on breeding stages and energy demands, with greater separation during chick-rearing.
  • * Results indicate that the birds not only avoid competition but also show migratory patterns that may reflect their distinct evolutionary histories, emphasizing the need for comprehensive research approaches to understand species co-existence amid environmental changes.

Article Abstract

Niche theory predicts that to reduce competition for the same resource, sympatric ecologically similar species should exploit divergent niches and segregate in one or more dimensions. Seasonal variations in environmental conditions and energy requirements can influence the mechanisms and the degree of niche segregation. However, studies have overlooked the multi-dimensional aspect of niche segregation over the whole annual cycle, and key facets of species co-existence still remain ambiguous. The present study provides insights into the niche use and partitioning of two morphologically and ecologically similar seabirds, the common (CDP, Pelecanoides urinatrix) and the South Georgian diving petrel (SGDP, Pelecanoides georgicus). Using phenology, at-sea distribution, diving behavior and isotopic data (during the incubation, chick-rearing and non-breeding periods), we show that the degree of partitioning was highly stage-dependent. During the breeding season, the greater niche segregation during chick-rearing than incubation supported the hypothesis that resource partitioning increases during energetically demanding periods. During the post breeding period, while species-specific latitudinal differences were expected (species specific water mass preference), CDP and SGDP also migrated in divergent directions. This segregation in migration area may not be only a response to the selective pressure arising from competition avoidance between sympatric species, but instead, could reflect past evolutionary divergence. Such stage-dependent and context-dependent niche segregation demonstrates the importance of integrative approaches combining techniques from different fields, throughout the entire annual cycle, to better understand the co-existence of ecologically similar species. This is particularly relevant in order to fully understand the short and long-term effects of ongoing environmental changes on species distributions and communities.This work demonstrates the need of integrative multi-dimensional approaches combining concepts and techniques from different fields to understand the mechanism and causal factors of niche segregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309125PMC
http://dx.doi.org/10.1007/s00442-022-05181-0DOI Listing

Publication Analysis

Top Keywords

niche segregation
24
ecologically species
8
annual cycle
8
demonstrates integrative
8
approaches combining
8
techniques fields
8
segregation
7
niche
7
species
6
stage-dependent niche
4

Similar Publications

Observations of representatives of Trombidium at one locality over two subsequent years revealed the syntopic occurrence of three species: T. holosericeum, T. brevimanum, and T.

View Article and Find Full Text PDF

Seabird biomonitoring indicates similar plastic pollution throughout the Canary Current.

Mar Pollut Bull

December 2024

Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain; Canary Islands' Ornithology and Natural History Group (GOHNIC), Buenavista del Norte, Canary Islands, Spain. Electronic address:

Marine plastic pollution is an emerging global threat for biodiversity. Plastic ingestion is one of the most typical and studied consequences with petrels being a particularly vulnerable group. We studied the plastic ingestion by Cory's shearwater (Calonectris borealis) fledglings in three islands of the Canarian Archipelago (Tenerife, Gran Canaria and Lanzarote).

View Article and Find Full Text PDF

Niche theory predicts that closely related and ecologically similar species with overlapping distribution ranges can coexist through resource partitioning that limits interspecific competition. However, studies examining the mechanisms promoting coexistence of top predators at a large geographical scale are still scant. Here, we describe the foraging ecology of 3 sympatric owl species (Northern long-eared owl [], Tawny owl [], Eurasian eagle owl []) in the Mediterranean Basin.

View Article and Find Full Text PDF

Is Bacillus cytotoxicus from edible insects a threat?

Int J Food Microbiol

February 2025

Department of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy.

Bacillus cytotoxicus is considered a potential emerging foodborne pathogen that has been under investigation in recent years. Most studies have focused on strains from vegetables, particularly potato products, but there is limited information on strains from other food sources. This study addresses the current research gap by investigating the genomic and phenotypic features of B.

View Article and Find Full Text PDF

A Pan-European study of the bacterial plastisphere diversity along river-to-sea continuums.

Environ Sci Pollut Res Int

December 2024

Laboratoire d'Océanographie Microbienne LOMIC, UMR 7621, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls-Sur-Mer, France.

Microplastics provide a persistent substrate that can facilitate microbial transport across ecosystems. Since most marine plastic debris originates from land and reaches the ocean through rivers, the potential dispersal of freshwater bacteria into the sea represents a significant concern. To address this question, we explored the plastisphere on microplastic debris (MPs) and on pristine microplastics (pMPs) as well as the bacteria living in surrounding waters, along the river-sea continuum in nine major European rivers sampled during the 7 months of the Tara Microplastics mission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!