Rapid categorization of visual objects is critical for comprehending our complex visual world. The role of individual cortical neurons and neural populations in categorizing visual objects during passive vision has previously been studied. However, it is unclear whether and how perceptually guided behaviors affect the encoding of stimulus categories by neural population activity in the higher visual cortex. Here we studied the activity of the inferior temporal (IT) cortical neurons in macaque monkeys during both passive viewing and categorization of ambiguous body and object images. We found enhanced category information in the IT neural population activity during the correct, but not wrong, trials of the categorization task compared to the passive task. This encoding enhancement was task difficulty dependent with progressively larger values in trials with more ambiguous stimuli. Enhancement of IT neural population information for behaviorally relevant stimulus features suggests IT neural networks' involvement in perceptual decision-making behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127116PMC
http://dx.doi.org/10.1038/s41598-022-12236-yDOI Listing

Publication Analysis

Top Keywords

neural population
16
inferior temporal
8
visual objects
8
cortical neurons
8
population activity
8
neural
7
neural signature
4
signature perceptual
4
perceptual decision
4
decision neural
4

Similar Publications

Zinc (Zn) is one of the most prevalent and essential micronutrients, found in 10% of all human proteins and involved in numerous cellular enzymatic pathways. Zn is important in the neonatal brain, due to its involvement in neurotransmission, synaptic plasticity, and neural signaling. It acts as a neuronal modulator and is highly concentrated in certain brain regions, such as the hippocampus, and the retina.

View Article and Find Full Text PDF

The current state of mental health treatment for individuals diagnosed with major depressive disorder leaves billions of individuals with first-line therapies that are ineffective or burdened with undesirable side effects. One major obstacle is that distinct pathologies may currently be diagnosed as the same disease and prescribed the same treatments. The key to developing antidepressants with ubiquitous efficacy is to first identify a strategy to differentiate between heterogeneous conditions.

View Article and Find Full Text PDF

Developing populations of connected neurons often share spatial and/or temporal features that anticipate their assembly. A unifying spatiotemporal motif might link sensory, central, and motor populations that comprise an entire circuit. In the sensorimotor reflex circuit that stabilizes vertebrate gaze, central and motor partners are paired in time (birthdate) and space (dorso-ventral).

View Article and Find Full Text PDF

Glucagon-like peptide-1 receptor agonists (GLP1RAs) effectively reduce body weight and improve metabolic outcomes, yet established peptide-based therapies require injections and complex manufacturing. Small-molecule GLP1RAs promise oral bioavailability and scalable manufacturing, but their selective binding to human versus rodent receptors has limited mechanistic studies. The neural circuits through which these emerging therapeutics modulate feeding behavior remain undefined, particularly in comparison to established peptide-based GLP1RAs.

View Article and Find Full Text PDF

The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure ( , opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating µ-opioid receptors that are located throughout the respiratory control network in the brainstem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!