The objective of this article is to present the design and manufacture of a scaled railroad track to be used as a laboratory track for the study of different railway applications. It could be a guideline for future laboratory railroad tracks. The ideal concept was based on possible future studies and, according to them, design requirements have been specified. The main characteristic of the track is that its geometry can be mechanically modified and irregularities can be introduced under controlled conditions in any kind of track sections: straight, curved and transition ones. Finally, the current installed track is shown and the performed quality controls are described.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126929 | PMC |
http://dx.doi.org/10.1038/s41598-022-12554-1 | DOI Listing |
Phys Rev Lett
December 2024
University of Connecticut, University of Connecticut, School of Mechanical, Aerospace, and Manufacturing Engineering, Storrs, Connecticut 06269, USA and Institute of Materials Science, Storrs, Connecticut 06269, USA.
Flat lines within a band structure represent constant frequency bands for all momentum values (i.e., they maintain zero group velocity for all wave numbers).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.
View Article and Find Full Text PDFMol Pharm
January 2025
ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 1774-15875, Tehran, Iran.
The potential of epoxy-graphene oxide (GO) nanocomposites to improve the mechanical characteristics of conventional epoxy resins is causing them to gain prominence. This makes them appropriate for advanced engineering applications, including structural materials, automotive, and aerospace. This study aimed to develop an epoxy/GO composite with improved mechanical properties through synthesizing epoxy/GO samples with varying GO content (from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!