A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Through the cleared aorta: three-dimensional characterization of mechanical behaviors of rat thoracic aorta under intraluminal pressurization using optical clearing method. | LitMetric

Through the cleared aorta: three-dimensional characterization of mechanical behaviors of rat thoracic aorta under intraluminal pressurization using optical clearing method.

Sci Rep

Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan.

Published: May 2022

The media of aortic wall is characterized by altering layers of elastin and smooth muscle cells (SMCs), along with collagen fibers in both layers, and plays a central role in functional and pathological remodeling such as hypertension and atherosclerosis. Because the arterial function is linked closely to the arterial wall internal structure, it is essential to investigate the alteration of the arterial microstructure during macroscopic deformation to understand cardiovascular pathologies. The present study adopted a tissue clearing method in three-dimensional mechanical characterization of rat thoracic aorta, and successfully observed changes in the structure of each of the three primary components of the aorta under intraluminal pressurization while maintaining tissue mechanical integrity and flexibility. Layers of elastic fibers and SMCs deformed greater on the intimal side than those on the adventitial side. Furthermore, there was a structural agreement in the alignment angle between SMC nuclei and elastic fibers on their intimal side, but not on the adventitial side. This is the first study that changes in the microstructure of three primary components of the aorta were visualized and evaluated through the aorta. The method established here would also be useful to understand tissue mechanics of other load-bearing soft tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126909PMC
http://dx.doi.org/10.1038/s41598-022-12429-5DOI Listing

Publication Analysis

Top Keywords

rat thoracic
8
thoracic aorta
8
aorta intraluminal
8
intraluminal pressurization
8
clearing method
8
three primary
8
primary components
8
components aorta
8
elastic fibers
8
intimal side
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!