A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced squalene production by modulation of pathways consuming squalene and its precursor. | LitMetric

Enhanced squalene production by modulation of pathways consuming squalene and its precursor.

J Biosci Bioeng

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. Electronic address:

Published: July 2022

Fermentative production of squalene in yeast as an alternative approach to extracting squalene from sharks or plants has attracted significant interest. However, squalene accumulation is limited due to its inevitable high-flux allocation toward ergosterol synthesis. In this study, we described expression control of squalene monooxygenase (Erg1p), the first-step enzyme of ergosterol synthesis from squalene, to significantly reduce squalene loss. We replaced the ERG1 promoter (P) with three natural yeast promoters with different activities (P, P, and P). ERG1 controlled by P showed 20 times higher squalene production compared with the wild-type strain, whereas the other two strains exhibited no significant difference. By combining the overexpression of rate-limiting enzyme and the deletion of non-essential competing pathway gene, the yeast Saccharomyces cerevisiae produced up to 379 mg/L of squalene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2022.04.004DOI Listing

Publication Analysis

Top Keywords

squalene
9
squalene production
8
ergosterol synthesis
8
enhanced squalene
4
production modulation
4
modulation pathways
4
pathways consuming
4
consuming squalene
4
squalene precursor
4
precursor fermentative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!