Background And Aims: Chronic inflammation plays a critical role in the pathogenesis of myeloproliferative neoplasm (MPN), and inflammatory conditions are closely related to the development and exacerbation of atherosclerosis. This study aimed to compare carotid plaque burden and neutrophil-lymphocyte ratio (NLR) in the essential thrombocythemia (ET)/polycythemia vera (PV) and control groups.
Methods And Results: We retrospectively assessed carotid plaque burden and NLR in patients with ET/PV between January 2010 and September 2021 and propensity-score matched these patients to control subjects from the general population. All patients underwent carotid imaging using carotid ultrasonography for atherosclerosis screening. After 3:1 propensity-score matching, 140 patients in the control group were matched to 51 patients in ET/PV group. The mean NLR was significantly higher in the MPN group than in the control group (4.77 ± 3.96 vs. 1.93 ± 1.03, p < 0.001). The carotid plaque score was also higher in MPN group than in the control group (2.37 ± 1.47 vs. 1.94 ± 1.17, p = 0.038).
Conclusion: Patients with PV/ET show a higher NLR and carotid plaque burden than the normal population. This reflected that PV/ET was a highly inflammatory and atherosclerotic condition expressing potentially increased cardiovascular risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.numecd.2022.04.013 | DOI Listing |
Int J Cardiol
January 2025
Division of Cardiology, Heart Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Background: Aortic valve sclerosis (AVS) is a progressive atherosclerotic disease associated with future cardiovascular events (CVE). However, whether its development and prognostic value are independent of arterial atherosclerosis has not been thoroughly investigated. We evaluated the determinants and prognostic value of AVS in conjunction with carotid atherosclerosis.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).
Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Dalian University of Technology Affiliated Central Hospital, Dalian 116024, China.
Objective: The study aims to elucidate the mechanisms underlying plaque growth by analyzing the variations in hemodynamic parameters within the plaque region of patients' carotid arteries before and after the development of atherosclerotic lesions.
Methods: The study enrolls 25 patients with common carotid artery stenosis and 25 with tandem carotid artery stenosis. Based on pathological analysis, three-dimensional models of the actual blood vessels before and after the lesion are constructed for two patients within a two-year period.
Eur Heart J
January 2025
Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Cardiovascular disease remains a prominent cause of disability and premature death worldwide. Within this spectrum, carotid artery atherosclerosis is a complex and multifaceted condition, and a prominent precursor of acute ischaemic stroke and other cardiovascular events. The intricate interplay among inflammation, oxidative stress, endothelial dysfunction, lipid metabolism, and immune responses participates in the development of lesions, leading to luminal stenosis and potential plaque instability.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou 310027, Zhejiang, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center phase, No.799, Dangui Road, Shanghai 200120, China.
The carotid and vertebral arteries are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the vertebral artery (VA) are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!