Ammonia is a key chemical feedstock for industry as well as future carbon-free fuel and transportable vector for renewable energy. Photoelectrochemical (PEC) ammonia synthesis from NO reduction reaction (NO RR) provides not only a promising alternative to the energy-intensive Haber-Bosch process through direct solar-to-ammonia conversion, but a sustainable solution for balancing the global nitrogen cycle by restoring ammonia from wastewater. In this work, selective ammonia synthesis from PEC NO RR by a kesterite (Cu ZnSnS [CZTS]) photocathode through loading defect-engineered TiO cocatalyst on a CdS/CZTS photocathode (TiO /CdS/CZTS) is demonstrated. The uniquely designed photocathode enables selective ammonia production from NO RR, yielding up to 89.1% Faradaic efficiency (FE) (0.1 V vs reversible hydrogen electrode (RHE)) with a remarkable positive onset potential (0.38 V vs RHE). By tailoring the amount of surface defective Ti species, the adsorption of reactant NO and NO intermediate is significantly promoted while the full coverage of TiO also suppresses NO liberation as a by-product, contributing to high ammonia selectivity. Further attempts on PEC ammonia synthesis from simulated wastewater show good FE of 64.9%, unveiling the potential of using the kesterite-based photocathode for sustainably restoring ammonia from nitrate-rich wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202201670 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China.
Electrochemical nitrate reduction to ammonia (NORR) is promising to not only tackle environmental issues caused by nitrate but also produce ammonia at room temperatures. However, two critical challenges are the lack of effective electrocatalysts and the understanding of related reaction mechanisms. To overcome these challenges, we employed first-principles calculations to thoroughly study the performance and mechanisms of triple-atom catalysts (TACs) composed of transition metals (including 27 homonuclear TACs and 4 non-noble bimetallic TACs) anchored on N-doped carbon (NC).
View Article and Find Full Text PDFLuminescence
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Electrolysis of seawater for hydrogen (H) production to harvest clean energy is an appealing approach. In this context, there is an urgent need for catalysts with high activity and durability. RuO electrocatalysts have shown efficient activity in the hydrogen and oxygen evolution reactions (HER and OER), but they still suffer from poor stability.
View Article and Find Full Text PDFChemosphere
January 2025
ING PAN - Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Senacka 1 Str., PL31002 Kraków, Poland.
Biosorption is nowadays recommended as an ecological and environmentally friendly alternative to remove metals from contaminated regions. Even in situ incubations of algae on the seabed are conducted to investigate potential future ways of reducing metal contamination. Our study investigated the negative effects on microorganisms when metal-enriched algae are released into the marine environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!