The complementary resistive switching (CRS) memristor has originally been proposed for use as the storage element or artificial synapse in large-scale crossbar array with the capability of solving the sneak path problem, but its usage has mainly been hampered by the inherent destructiveness of the read operation (switching '1' state to 'ON' or '0' state). Taking a different perspective on this 'undesired' property, we here report on the inherent behavioral similarity between the CRS memristor and a leaky integrate-and-fire (LIF) neuron which is another basic neural computing element, in addition to synapse. In particular, the mechanism behind the undesired read destructiveness for storage element and artificial synapse can be exploited to naturally realize the LIF and the ensuing spontaneous repolarization processes, followed by a refractory period. By means of this biological similarity, we demonstrate a Pt/TaO/TaO/Ta CRS memristor that can exhibit these neuronal behaviors and perform various fundamental neuronal operations, including additive/subtractive operations and coincidence detection. These results suggest that the CRS neuron, with its bio-interpretability, is a useful addition to the family of memristive neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac7241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!