The negative effects of polyfluoroalkyl substances (PFAS) on the environment and health have recently attracted much attention. This article reviews the influence of soil- and water-derived dissolved organic matter (DOM) on the environmental fate of PFAS. In addition to being co-adsorped with PFAS to increase the adsorption capacity, DOM competes with PFAS for adsorption sites on the surface of the material, thereby reducing the removal rate of PFAS or increasing water solubility, which facilitates desorption of PFAS in the soil. It can quench some active species and inhibit the degradation of PFAS. In contrast, before DOM in water self-degrades, DOM has a greater promoting effect on the degradation of PFAS because DOM can complex with iron, iodine, among others, and act as an electron shuttle to enhance electron transfer. In soil aggregates, DOM can prevent microorganisms from being poisoned by direct exposure to PFAS. In addition, DOM increases the desorption of PFAS in plant root soil, affecting its bioavailability. In general, DOM plays a bidirectional role in adsorption, degradation, and plant uptake of PFAS, which depends on the types and functional groups of DOM. It is necessary to enhance the positive role of DOM in reducing the environmental risks posed by PFAS. In future, attention should be paid to the DOM-induced reduction of PFAS and development of a green and efficient continuous defluorination technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129139 | DOI Listing |
Nat Commun
December 2024
School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:
Water purification become more challenging day by day, due to novel anthropogenic pollutants such as per- and polyfluoroalkyl substances (PFAS) used in nonstick cookware, firefighting foams, packaging etc. PFAS has adverse effects on human health and ecosystem and their physicochemical properties and unique molecular structures make the conventional water treatment methods more challenging. Among the novel PFAS removal technologies, nanomaterials incorporated in membranes are regarded as promising membrane technology for the treatment of PFAS.
View Article and Find Full Text PDFTalanta
December 2024
Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA. Electronic address:
Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors. Environmental pollutants may contribute to the etiology of ASD, but studies of perfluoroalkyl substances (PFAS) have shown conflicting results.
Objectives: We assessed associations between cord blood concentrations of PFAS with autistic traits at age seven years in a Singaporean birth cohort.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!