The chaperone activity of human αA-crystallin (HAA) against aggregation of human γD-crystallin (HGD) was enhanced by gold nanoparticles (AuNPs). Chaperone activity of HAA was almost doubled in the presence of 5.5 nM gold nanoparticles (AuNPs). To decipher this effect at molecular level, interactions between HAA and AuNPs were studied using fluorescence and circular dichroism spectroscopic techniques. The nanoparticles were synthesized and characterized by using TEM and dynamic light scattering (DLS). TEM and DLS studies revealed that bioconjugation of AuNPs with HAA did not cause any significant change in the size of the nanoparticles. AuNPs had caused static quenching of tryptophan (Trp) fluorescence, which was confirmed through determination of excited state lifetime of Trp residue of HAA in absence and the presence of AuNPs. The association and quenching constant for HAA-AuNPs conjugation were ∼ 10 M. Hydrogen bonding and van der Waals interactions were found to be involved in HAA-AuNPs complex. Polarity of Trp microenvironment in HAA was not perturbed by AuNPs as supported by synchronous and three-dimensional fluorescence spectroscopy. Far-UV CD spectra suggested that the secondary structure of HAA was not significantly affected by AuNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121344 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!