Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dynamic assembly and disassembly of actin proteins play a key role in the cytoskeleton, but the cellular functions of actin are not only restricted to the cytoplasmic compartment. Recent studies have shown that actin spatiotemporally changes its polymerized state in the nucleus as well and such dynamic nature of actin is relevant to key nuclear events including gene expression, DNA damage response and chromatin organization. In this review, we highlight emerging roles of actin in the nuclear compartment especially in the context of embryonic development and cellular differentiation. We first explain how the actin nucleoskeleton can be formed and function in cells. Notably, nuclear actin dynamics are greatly altered when cell fates change, such as after fertilization and T cell differentiation. We discuss how the dynamic actin nucleoskeleton contributes to accomplishing developmental programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceb.2022.102100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!