A unidirectional light-driven rotary motor was looped in a figure-of-eight molecule by linking two polymer chains between its stator and rotor parts. By properly tuning the size of these linkers, clockwise rotation of the motor under UV light was shown to create conformationally strained twists between the polymer chains, and in this tensed conformation, the energy stored in the molecular object was sufficient to trigger the reverse rotation of the motor back to its fully relaxed state. The functioning principle of this motorized molecular device appears very similar to that of macroscopic whirligig crafts used by children for fun. In addition, we found that in its out-of-equilibrium tensed state, the fluorescence emission of the molecular motor increased by 500% due to the mechanical constraints imposed by the polymer chains on its conjugated core. Finally, by calculating the apparent thermal energies of activation for the backward rotations at different levels of twisting, we quantitatively determined a lower estimate of the work generated by this rotary motor, from which a torque and a force were extracted, thus answering a long-term open question in this field of research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c02547 | DOI Listing |
Nature
January 2025
Department of Chemistry, University of Manchester, Manchester, UK.
Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan.
Latilactobacillus curvatus, found in various fermented foods, is a promising probiotic with unique health benefits. Lipoteichoic acid (LTA) is a characteristic amphiphilic surface polymer of gram-positive bacteria and exhibits immunomodulatory activities. Despite the structural diversity of LTA among different bacterial species and strains, no information is available on the chemical structure of LTA in L.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China. Electronic address:
Surfaces capable of specific biomolecule recognition are essential for cancer theranostics, biosensing, and tissue engineering. However, current grafting methods, critical for dictating the recognition efficiency and biocompatibility of biomaterials, especially hydrophilic polymers, struggle to balance high grafting density with ease of implementation. In pursuit of a simple, effective, and versatile solution, we introduced a polydopamine (PDA)-assisted Ca-mediated grafting strategy using hyaluronic acid (HA) as a model material.
View Article and Find Full Text PDFLangmuir
January 2025
School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan.
Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!