Transcriptional landscapes of de novo root regeneration from detached Arabidopsis leaves revealed by time-lapse and single-cell RNA sequencing analyses.

Plant Commun

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China. Electronic address:

Published: July 2022

Detached Arabidopsis thaliana leaves can regenerate adventitious roots, providing a platform for studying de novo root regeneration (DNRR). However, the comprehensive transcriptional framework of DNRR remains elusive. Here, we provide a high-resolution landscape of transcriptome reprogramming from wound response to root organogenesis in DNRR and show key factors involved in DNRR. Time-lapse RNA sequencing (RNA-seq) of the entire leaf within 12 h of leaf detachment revealed rapid activation of jasmonate, ethylene, and reactive oxygen species (ROS) pathways in response to wounding. Genetic analyses confirmed that ethylene and ROS may serve as wound signals to promote DNRR. Next, time-lapse RNA-seq within 5 d of leaf detachment revealed the activation of genes involved in organogenesis, wound-induced regeneration, and resource allocation in the wounded region of detached leaves during adventitious rooting. Genetic studies showed that BLADE-ON-PETIOLE1/2, which control aboveground organs, PLETHORA3/5/7, which control root organogenesis, and ETHYLENE RESPONSE FACTOR115, which controls wound-induced regeneration, are involved in DNRR. Furthermore, single-cell RNA-seq data revealed gene expression patterns in the wounded region of detached leaves during adventitious rooting. Overall, our study not only provides transcriptome tools but also reveals key factors involved in DNRR from detached Arabidopsis leaves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284295PMC
http://dx.doi.org/10.1016/j.xplc.2022.100306DOI Listing

Publication Analysis

Top Keywords

detached arabidopsis
12
involved dnrr
12
novo root
8
root regeneration
8
arabidopsis leaves
8
rna sequencing
8
root organogenesis
8
key factors
8
factors involved
8
dnrr time-lapse
8

Similar Publications

Article Synopsis
  • Pugionium cornutum demonstrates strong tolerance to drought, salt, and disease, but the ways it copes with these stresses are not well understood.
  • In this study, researchers identified the PcNAC25 transcription factor gene, which is linked to stress response and enhances drought and salt tolerance when overexpressed in Arabidopsis.
  • The findings suggest that PcNAC25 acts as a positive regulator by boosting ROS-scavenging enzyme activity and promoting root growth, paving the way for more research on its regulatory mechanisms against environmental stresses.
View Article and Find Full Text PDF

Depletion of Gibberellin Signaling Up-Regulates Transcription and Promotes Adventitious Root Formation in Leaf Explants.

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.

Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Functional Analysis of in Controlling Root Regeneration from Detached Leaves.

Int J Mol Sci

December 2024

State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

root regeneration is the process by which adventitious roots form around the wound site from wounded or detached plant organs. The root regeneration process has been widely exploited in cutting technology used for vegetative propagation. Here, we employed detached leaf explants from to form adventitious roots for studying the process of root regeneration.

View Article and Find Full Text PDF

Development of an inducible DNA barcoding system to understand lineage changes in Arabidopsis regeneration.

Dev Cell

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China. Electronic address:

Plants demonstrate a high degree of developmental plasticity, capable of regenerating entire individuals from detached somatic tissues-a regenerative phenomenon rarely observed in metazoa. Consequently, elucidating the lineage relationship between somatic founder cells and descendant cells in regenerated plant organs has long been a pursuit. In this study, we developed and optimized both DNA barcode- and multi-fluorescence-based cell-lineage tracing toolsets, employing an inducible method to mark individual cells in Arabidopsis donor somatic tissues at the onset of regeneration.

View Article and Find Full Text PDF

ABA-activated low-nanomolar Ca-CPK signalling controls root cap cycle plasticity and stress adaptation.

Nat Plants

January 2025

State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China.

Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA-Ca signalling links, imaging ABA-induced increases in Ca concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca ratiometric sensor with a low-nanomolar Ca-binding affinity and a large dynamic range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!