The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166405 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1009782 | DOI Listing |
Cancer Med
January 2025
Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
Background: The histologic classification of rhabdomyosarcoma (RMS) as alveolar (aRMS) or embryonal (eRMS) is of prognostic importance, with the aRMS being associated with a worse outcome. Specific gene fusions (PAX3/7::FOXO1) found in the majority of aRMS have been recognized as markers associated with poor prognosis and are included in current risk stratification instead of histologic subtypes in localized disease. In metastatic disease, the independent prognostic significance of fusion status has not been definitively established.
View Article and Find Full Text PDFArkh Patol
December 2024
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
Alveolar rhabdomyosarcoma (ARMS) patients harboring PAX3-FOXO1 and PAX7-FOXO1 fusion proteins exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we developed a novel muscle progenitor model and used epigenomic approaches to unravel genome re-wiring events mediated by PAX3/7 fusion proteins. Importantly, these regulatory mechanisms are conserved across established ARMS cell lines, primary tumors, and orthotopic-patient derived xenografts.
View Article and Find Full Text PDFMed Res Rev
November 2024
Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada.
Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, or . ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-β). This overexpression of TGF-β1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!