We developed a microfluidic device for the rapid analysis of biomarkers in small volumes of whole blood. This device includes an onboard plasma separation module connected to a downstream bioanalysis module in which plasma mixes with reagents and the results of a colorimetric assay are recorded. Actuation of onboard microvalves within a bioanalysis module creates active mixing conditions that allowed us to achieve solution homogeneity within 5 min. To demonstrate utility, we carried out glucose detection in our device. With 5 μL of whole blood as an input, our microfluidic device enabled a time-to-answer of 10 min with a limit of detection of 0.21 ± 0.04 mM for glucose. This device has immediate applications for rapid and sensitive monitoring of hypoglycemia at the point of care (POC). Furthermore, our automated microfluidic device represents a platform technology that may be used to detect other biomarkers in whole blood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c01139 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.
We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
January 2025
Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective: To evaluate the efficacy of a microfluidic culture system supplemented with follicular fluid meiosis-activating sterol (FF-MAS) on the maturation of immature oocytes in patients with polycystic ovarian syndrome (PCOS).
Methods: A total of 438 germinal vesicle oocytes from 163 PCOS patients were included. Oocytes were divided into five groups: (1) cultured in static drops without FF-MAS, (2) cultured in static drops with FF-MAS, (3) cultured in a microfluidic device without FF-MAS, (4) cultured in a microfluidic device with FF-MAS for the first 2 h, and (5) cultured in a microfluidic device with FF-MAS for 24 h.
Eur J Cell Biol
January 2025
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA. Electronic address:
Since the development of the three-dimensional (3D) "mini-gut" culture system, adult stem cell-derived organoid technology has rapidly advanced, providing in vitro models that replicate key cellular, molecular, and physiological properties of multiple organs. The 3D intestinal organoid system has resolved many long-standing challenges associated with immortalized or cancer cell cultures, offering unparalleled capabilities for modeling gastrointestinal development and diseases. However, significant limitations remain, including restricted accessibility to the epithelial apical surface for studying host-microbe interactions, interruptions in modeling chronic gastrointestinal diseases due to frequent passaging and dissociation, and the absence of mechanical cues such as peristalsis and luminal flow, which are critical for organ development and function.
View Article and Find Full Text PDFUltrasonics
January 2025
Acoustic and Application Group, Federal University of Alagoas, Campus Arapiraca, Brazil. Electronic address:
3D printing technology, also known as Additive Manufacturing (AM), has revolutionized object prototyping, offering a simple, cost-effective, and efficient approach to creating structures with diverse spatial features. However, the mechanical properties of 3D-printed structures are highly dependent on the material type and manufacturing technique employed. In this study, ultrasonic testing methods were used to comprehensively characterize standard samples produced using two popular printing techniques: material extrusion and vat photopolymerization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain.
Senescent cells are involved in age-related disorders in different organs and are therapeutic targets for fibrotic and chronic pathologies. Immune-modulating agents, able to enhance senescent cell detection and elimination by endogenous immune cells, have emerged as pharmacological strategies. We report herein a nanoparticle for immune cell-mediated senolytic therapy designed to recruit immune cells in response to specific enzymatic matrix metalloproteinase-3 (MMP-3) activity in the senescence-associated secretory phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!