A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Key Drivers and Facilitators of the Choice to Use mHealth Technology in People With Neurological Conditions: Observational Study. | LitMetric

Background: There is increasing interest in the potential uses of mobile health (mHealth) technologies, such as wearable biosensors, as supplements for the care of people with neurological conditions. However, adherence is low, especially over long periods. If people are to benefit from these resources, we need a better long-term understanding of what influences patient engagement. Previous research suggests that engagement is moderated by several barriers and facilitators, but their relative importance is unknown.

Objective: To determine preferences and the relative importance of user-generated factors influencing engagement with mHealth technologies for 2 common neurological conditions with a relapsing-remitting course: multiple sclerosis (MS) and epilepsy.

Methods: In a discrete choice experiment, people with a diagnosis of MS (n=141) or epilepsy (n=175) were asked to select their preferred technology from a series of 8 vignettes with 4 characteristics: privacy, clinical support, established benefit, and device accuracy; each of these characteristics was greater or lower in each vignette. These characteristics had previously been emphasized by people with MS and or epilepsy as influencing engagement with technology. Mixed multinomial logistic regression models were used to establish which characteristics were most likely to affect engagement. Subgroup analyses explored the effects of demographic factors (such as age, gender, and education), acceptance of and familiarity with mobile technology, neurological diagnosis (MS or epilepsy), and symptoms that could influence motivation (such as depression).

Results: Analysis of the responses to the discrete choice experiment validated previous qualitative findings that a higher level of privacy, greater clinical support, increased perceived benefit, and better device accuracy are important to people with a neurological condition. Accuracy was perceived as the most important factor, followed by privacy. Clinical support was the least valued of the attributes. People were prepared to trade a modest amount of accuracy to achieve an improvement in privacy, but less likely to make this compromise for other factors. The type of neurological condition (epilepsy or MS) did not influence these preferences, nor did the age, gender, or mental health status of the participants. Those who were less accepting of technology were the most concerned about privacy and those with a lower level of education were prepared to trade accuracy for more clinical support.

Conclusions: For people with neurological conditions such as epilepsy and MS, accuracy (ie, the ability to detect symptoms) is of the greatest interest. However, there are individual differences, and people who are less accepting of technology may need far greater reassurance about data privacy. People with lower levels of education value greater clinician involvement. These patient preferences should be considered when designing mHealth technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171601PMC
http://dx.doi.org/10.2196/29509DOI Listing

Publication Analysis

Top Keywords

people neurological
16
neurological conditions
16
mhealth technologies
12
clinical support
12
people
10
influencing engagement
8
discrete choice
8
choice experiment
8
privacy clinical
8
device accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!