Dedifferentiated liposarcoma (DDLPS) is morphologically characterized by well-differentiated liposarcomas associated with high-grade non-lipogenic sarcoma and molecularly characterized by the coamplification of MDM2 and CDK4(12q14-15). DDLPS is highly aggressive, and effective systemic chemotherapy has not been developed yet. In this study, we established a novel DDLPS cell line, NCC-DDLPS6-C1, as a potential tool for the development of novel therapies. NCC-DDLPS6-C1 cells were established from surgically resected tumor tissues of a patient with DDLPS. Amplification and overexpression of MDM2 and CDK4 were observed in NCC-DDLPS6-C1 cells. NCC-DDLPS6-C1 cells proliferated rapidly, invaded aggressively, and formed spheroids. Moreover, NCC-DDLPS6-C1 cells formed tumors in mice. These observations suggested that the malignant potentials that may reflect the original features of DDLPS were retained in the NCC-DDLPS6-C1. Anticancer drugs that significantly reduced the proliferation of NCC-DDLPS6-C1 cells were identified by drug library screening. Thus, NCC-DDLPS6-C1 may recapitulate the original genotypes and phenotypes, and we conclude that the NCC-DDLPS6-C1 cell line is a useful resource for the study of DDLPS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13577-022-00710-8DOI Listing

Publication Analysis

Top Keywords

ncc-ddlps6-c1 cells
20
ncc-ddlps6-c1
10
dedifferentiated liposarcoma
8
ddlps
6
cells
5
establishment characterization
4
characterization novel
4
novel patient-derived
4
patient-derived cell
4
cell dedifferentiated
4

Similar Publications

Dedifferentiated liposarcoma (DDLPS) is morphologically characterized by well-differentiated liposarcomas associated with high-grade non-lipogenic sarcoma and molecularly characterized by the coamplification of MDM2 and CDK4(12q14-15). DDLPS is highly aggressive, and effective systemic chemotherapy has not been developed yet. In this study, we established a novel DDLPS cell line, NCC-DDLPS6-C1, as a potential tool for the development of novel therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!