Smooth muscle cells (SMC) mediate the contraction of the airway and the intrapulmonary artery to modify airflow resistance and pulmonary circulation, respectively, hence playing a critical role in the homeostasis of the pulmonary system. Deregulation of SMC contractility contributes to several pulmonary diseases, including asthma and pulmonary hypertension. However, due to limited tissue access and a lack of culture systems to maintain in vivo SMC phenotypes, molecular mechanisms underlying the deregulated SMC contractility in these diseases remain fully identified. The precision-cut lung slice (PCLS) offers an ex vivo model that circumvents these technical difficulties. As a live, thin lung tissue section, the PCLS retains SMC in natural surroundings and allows in situ tracking of SMC contraction and intracellular Ca signaling that regulates SMC contractility. Here, a detailed mouse PCLS preparation protocol is provided, which preserves intact airways and intrapulmonary arteries. This protocol involves two essential steps before subjecting the lung lobe to slicing: inflating the airway with low-melting-point agarose through the trachea and infilling pulmonary vessels with gelatin through the right ventricle. The PCLS prepared using this protocol can be used for bioassays to evaluate Ca-mediated contractile regulation of SMC in both the airway and the intrapulmonary arterial compartments. When applied to mouse models of respiratory diseases, this protocol enables the functional investigation of SMC, thereby providing insight into the underlying mechanism of SMC contractility deregulation in diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147671 | PMC |
http://dx.doi.org/10.3791/63932 | DOI Listing |
Sci Adv
December 2024
Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
The orientation and function of smooth muscle in the cervix may contribute to the important biomechanical properties that change during pregnancy. Thus, this study examined the three-dimensional structure, smooth muscle phenotype, and mechanical and contractile functions of the upper and lower cervix of nongravid (not pregnant) and gravid (pregnant) mice. In gravid cervix, we uncovered region-specific changes in the structure and organization of fiber tracts.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:
Background: Recent smooth muscle cell (SMC)-lineage tracing and single-cell RNA sequencing (scRNA-seq) experiments revealed a significant role of SMC-derived cells in atherosclerosis development. Further, thrombospondin-1 (TSP1), a matricellular protein, and activation of its receptor cluster of differentiation (CD) 47 have been linked with atherosclerosis. However, the role of vascular SMC TSP1-CD47 signaling in regulating VSMC phenotype and atherogenesis remains unknown.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
December 2024
Division of Pediatric Urology, University Children's Hospital Zurich, Zurich, Switzerland.
Background: Congenital bladder disorders in children necessitate innovative approaches for bladder tissue regeneration, aiming to minimize complications associated with conventional therapies. This study focused on generating a cell-seeded scaffold using superior smooth muscle cells (SMCs) by exploring the potential of smooth muscle cell spheroids (3D SMCs) compared to conventionally cultured SMCs (2D SMCs) for bladder tissue engineering. Additionally, adipose-derived stem cells (ADSCs) were investigated for their impact on SMC proliferation and maturation, and pre-differentiated smooth muscle-like ADSCs (pADSCs) for their potential as alternative cell source.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2024
Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M., F.F.).
Stem Cell Res Ther
December 2024
Department of Biomedical Engineering, The University of Alabama at Birmingham, Volker Hall, 1670 University Boulevard, Birmingham, AL, 35255, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!