Epilepsy, a moderate to chronic neuropathological condition, is induced by the acute blockage of synaptic and voltage-gated inhibitory conduction or through the activation of synaptic and voltage-gated excitatory conduction. The regulation of long-term potentiation (LTP) is important in the regulation of epileptic events, and its activity is linked to specific protein kinases. The PKC-γ subtype is a vaguely explored therapeutic target for neurological disorders, but in selected studies, it is proven to be a critical intermediate protein in LTP. This study utilized computational modelling approaches including receptor-based docking, QSAR followed by explicit binding score assessment method MM/GBSA, MM/PBSA (EDA) and MTD simulation-based FES iteration. This was performed to virtually screen the small molecule libraries, which comprised about 2.79 lacs compounds against the Ca-binding site of the PKC-γ-C2 regulatory domain. The screened molecules LIG-41 ([4-Oxo-4-(4-phenylmethoxyanilino) butyl] azanium) and LIG-16 (Emixustat) exhibit overall optimal attributes in the above-mentioned parameters. The two leads are expected to inhibit the Ca-mediated PKC-γ activity.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2077447DOI Listing

Publication Analysis

Top Keywords

synaptic voltage-gated
8
computational attributes
4
attributes protein
4
protein kinase-c
4
kinase-c gamma
4
gamma c2-domain
4
c2-domain virtual
4
virtual screening
4
screening small
4
small molecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!