A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tracing the vibrational dynamics of sodium iodide the spectrum of emitted photofragments. | LitMetric

Tracing the vibrational dynamics of sodium iodide the spectrum of emitted photofragments.

Phys Chem Chem Phys

Department of Theoretical Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, H-4002 Debrecen, Hungary.

Published: June 2022

We study by real-time wave packet simulations the ultrafast photodissociation dynamics of the sodium iodide molecule with the aim to trace molecular vibrational motion in a bound electronic state. Applying a few-cycle infrared pump laser pulse, a nuclear wave packet is created in the ground electronic state the dynamic Stark shift of the potential energy curves of the molecule. To probe this coherent motion in the ground state, we propose to use a series of ultrashort laser pulses with different photon energies that resonantly promote the spread-out wave packet to the repulsive excited state. As the kinetic energy release (KER) spectrum of the dissociating photofragments is sensitive to the shape of the vibrational wave packet, in our pump-probe scheme, KER-delay spectrograms generated for different probe photon energies are used to monitor the molecular motion in the bound state. In our numerical analysis supported by a simple analytical model, we show that for sufficiently long probe pulses the proposed mapping scheme reaches its limits as nuclear wave packet interferences wash out the observed images. The appearance of these interferences is attributed to nuclear wave packet amplitudes that are generated at the first and second half of the probe pulse with the same energy but with a certain time delay. In our detailed numerical survey on the laser parameter dependence of the presented scheme, we find that resonant probe pulses with a few femtosecond duration are suitable for a qualitative mapping of the bound-state molecular motion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp00901cDOI Listing

Publication Analysis

Top Keywords

wave packet
24
nuclear wave
12
dynamics sodium
8
sodium iodide
8
motion bound
8
electronic state
8
photon energies
8
molecular motion
8
probe pulses
8
wave
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!