DNA-Au Janus Nanoparticles for In Situ SERS Detection and Targeted Chemo-photodynamic Synergistic Therapy.

Anal Chem

Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong; and College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.

Published: May 2022

Cancer theranostics is of great significance in the personalized therapy. In this work, stable Janus nanoparticles (JNPs) containing PEG and two kinds of DNAs were prepared by means of "click chemistry". In response to ATP or acid condition, the prepared JNPs could form Au NP dimers, which facilitate in situ SERS detection and SERS imaging analysis of cancer cells due to the formation of "hot spots" in the nanogap between the Au NP dimers. A detection limit of 2.3 × 10 M was obtained for ATP. As for a pH sensor, the SERS signals increased with the decrease of pH value from 8.0 to 4.0. In situ monitoring of ATP or acid condition in cancer cells by SERS can improve the accuracy and sensitivity of diagnosis. Moreover, drugs and photosensitizers loaded on the other side of JNPs led to the chemotherapy/photodynamic therapy synergistic antitumor effect, which was verified by in vitro and in vivo experiments. Given the excellent performance in SERS detection and cancer therapy, the developed JNPs hold considerable potential in cancer theranostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c05649DOI Listing

Publication Analysis

Top Keywords

sers detection
12
janus nanoparticles
8
situ sers
8
cancer theranostics
8
atp acid
8
acid condition
8
cancer cells
8
sers
6
cancer
5
dna-au janus
4

Similar Publications

The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".

View Article and Find Full Text PDF

Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS.

View Article and Find Full Text PDF

Ultrasensitive and multiplex SERS immunoassay for stroke subtype-specific biomarkers based on graphene oxide-supported nanofilms coated by roughened nanoboxes with extensive high-density hotspots.

Biosens Bioelectron

March 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China. Electronic address:

Herein, we fabricate the graphene oxide-supported nanofilms coated by roughened nanoboxes (GO@AuAgRNB) for the ultrasensitive and simultaneous determination of multiple stroke subtype-specific biomarkers. Initially, Au-Ag roughened nanobox (AuAgRNB) with abundant coupling and tip hotspots is prepared by the partial surface passivation strategy. AuAgRNB is uniformly, densely and firmly assembled onto graphene oxide (GO) by metal-sulfur bonds, generating extensive high-density hotspots.

View Article and Find Full Text PDF

In this study, we employed density functional theory to investigate the interactions between type B fumonisins (FB1, FB2, and FB3) and silver-enhancing substrates in the surface-enhanced Raman scattering effect. Theoretical calculations of the molecular electrostatic potential reveal that the oxygen atoms at the terminal of the tricarboxylic acid structure in all three molecules exhibit the strongest electronegativity, suggesting these sites as potential active sites for molecular-substrate interactions. Molecular-Ag vertex-binding/surface-binding complex models were constructed based on possible docking modes between the molecule and the substrate, and binding energies were calculated.

View Article and Find Full Text PDF

Sensitive and specific biomarkers are needed for early diagnosis of neurodegenerative diseases, such as Alzheimer's disease (AD). Herein, a new type of chiral gold nanostructure induced by D-/L-cysteine-leucine dipeptides with a g-factor of 0.1 was successfully synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!