Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Disused osteoporosis is a kind of osteoporosis, a common age-related disease. Neurological disorders are major risk factors for osteoporosis. Though there are many studies on disuse osteoporosis, the genetic mechanisms for the association between glutathione metabolism and ferroptosis in osteoblasts with disuse osteoporosis are still unclear. The purpose of this study is to explore the key genes and other related mechanism of ferroptosis and glutathione metabolism in osteoblast differentiation and disuse osteoporosis. By weighted gene coexpression network analysis (WGCNA), the process of osteoblast differentiation-related genes was studied in GSE30393. And the related functional pathways were found through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. By combining GSE1367 and GSE100933 together, key genes which were separately bound up with glutathione metabolism and ferroptosis were located. The correlation of these key genes was analyzed by the Pearson correlation coefficient. GSTM1 targeted agonist glutathione (GSH) selected by connectivity map (CMap) analysis was used to interfere with the molding disused osteoporosis process in MC3T3-E1 cells. RT-PCR and intracellular reactive oxygen species (ROS) were performed. Two important pathways, glutathione metabolism and ferroptosis pathways, were found. GSTM1 and TFRC were thought as key genes in disuse osteoporosis osteoblasts with the two mechanisms. The two genes have a strong negative correlation. Our experiment results showed that the expression of TFRC was consistent with the negative correlation with the activation process of GSTM1. The strong relationship between the two genes was proved. Glutathione metabolism and ferroptosis are important in the normal differentiation of osteoblasts and the process of disuse osteoporosis. GSTM1 and TFRC were the key genes. The two genes interact with each other, which can be seen as a bridge between the two pathways. The two genes participate in the process of reducing ROS in disuse osteoporosis osteoblasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119747 | PMC |
http://dx.doi.org/10.1155/2022/4914727 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!