Despite decades of research on lobster species' biology, ecology, and microbiology, there are still unresolved questions about the microbial communities which associate in or on lobsters under healthy or diseased states, microbial acquisition, as well as microbial transmission between lobsters and between lobsters and their environment. There is an untapped opportunity for metagenomics, metatranscriptomics, and metabolomics to be added to the existing wealth of knowledge to more precisely track disease transmission, etiology, and host-microbe dynamics. Moreover, we need to gain this knowledge of wild lobster microbiomes before climate change alters environmental and host-microbial communities more than it likely already has, throwing a socioeconomically critical industry into disarray. As with so many animal species, the effects of climate change often manifest as changes in movement, and in this perspective piece, we consider the movement of the American lobster (), Atlantic Ocean currents, and the microorganisms associated with either.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121004PMC
http://dx.doi.org/10.3389/fmicb.2022.824950DOI Listing

Publication Analysis

Top Keywords

microbial transmission
8
climate change
8
questions remain
4
remain unanswered
4
unanswered role
4
microbial
4
role microbial
4
transmission epizootic
4
epizootic shell
4
shell disease
4

Similar Publications

Clinical implications of maternal multikingdom transmissions and early-life microbiota.

Lancet Microbe

January 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China. Electronic address:

Mother-to-infant transmission of the bacteriome, virome, mycobiome, archaeome, and their mobile genetic elements has been recognised in nature as an important step for the infant to acquire and maintain a healthy early-life (from birth till age 3 years) microbiota. A comprehensive overview of other maternal multikingdom transmissions remains unavailable, except for that of the bacteriome. Associations between microorganisms and diseases throughout the human life span have been gradually discovered; however, whether these microorganisms are maternally derived and how they concomitantly interact with other microbial counterparts remain poorly understood.

View Article and Find Full Text PDF

Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.

Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.

View Article and Find Full Text PDF

Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.

Adv Healthc Mater

January 2025

Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Wastewater-based analysis of antimicrobial resistance at UK airports: Evaluating the potential opportunities and challenges.

Environ Int

January 2025

School of Environmental & Natural Sciences, Bangor University, Bangor LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, United States.

With 40 million annual passenger flights, airports are key hubs for microbial communities from diverse geographic origins to converge, mix, and distribute. Wastewater derived from airports and aircraft represent both a potential route for the global dispersion of antimicrobial resistant (AMR) organisms and an under-utilised resource for strengthening global AMR surveillance. This study investigates the abundance and diversity of antimicrobial resistance genes (ARGs) in wastewater samples collected from airport terminals (n = 132), aircraft (n = 25), and a connected wastewater treatment plant (n = 11) at three international airports in the UK (London Heathrow, Edinburgh and Bristol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!