At pH 4.0, greater than 10(-7) M nigericin was found capable of conducting net charge transfer across bimolecular lecithin membranes, with a stoichiometry of three uncharged ionophore moieties per cation. At neutral or alkaline pH, nigericin catalyzed the transfer of net charge through dimer forms. In agreement with these results, quantitative analysis of nigericin-potassium complexes formed at pH 4.0 showed a 3:1 ratio, and a 2:1 ratio at neutral or alkaline pH. A 1:1 stoichiometry was observed when the ionophore complex was not transferred from methanol-water to chloroform. Moreover, 1H-NMR spectra of nigericin-cation complexes formed at pH 4.0, displayed clear-cut chemical shift variations different to those observed at neutral or alkaline pH. Thus, it is apparent that acid pH causes a transition from dimeric to trimeric forms of nigericin-cation complexes. The membrane conductance increased up to ten times when negatively charged phosphatidyl glycerol was used, while the conductance decreased in positively charged cetylpyridinium containing membranes at pH 4.0. These results suggest that the nigericin-K+ oligomeric complex is positively charged. In this respect, pKa values around 8.0 were obtained for the nigericin carboxylate group in media of different dielectric constant, indicating that this chemical group is undissociated under these conditions. Moreover, the values for the complex formation constants as well as the delta G values calculated for the dimers and trimers indicated that such ionophore cation oligomeric complexes are thermodynamically stable.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01869625DOI Listing

Publication Analysis

Top Keywords

neutral alkaline
12
net charge
8
complexes formed
8
nigericin-cation complexes
8
positively charged
8
formation ion-translocating
4
ion-translocating oligomers
4
nigericin
4
oligomers nigericin
4
nigericin greater
4

Similar Publications

This study focuses on enhancing the water oxidation reaction (WOR) efficacy of dinuclear cobalt complex catalysts from both kinetic (turnover frequency, TOF) and thermodynamic (overpotential, η) perspectives. For this purpose, we synthesized six dinuclear cobalt complexes 1-6 comprising non-innocent ligands with different electronically active substituents (-OMe (1), -Me (2), -H (3), -F (4), -Cl (5), and -CN (6)). The electronic effects on the electrochemical WOR under neutral, acidic, and alkaline conditions were investigated experimentally and computationally.

View Article and Find Full Text PDF

Aim: The aim of this study was to make a laboratory assessment of pH influence on the kinetics of the release of nickel ions in artificial saliva.

Methods And Material: In this study, 15 basic orthodontic appliances are immersed in 15 polyethylene tubes each containing 40 ml of artificial saliva. Tubes were divided into three sub-groups of 5 tubes depending on the pH: pH 5, pH 7 and pH 8.

View Article and Find Full Text PDF

Fire Resistant Adhesive from Chitosan.

Biomacromolecules

January 2025

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

Chitosan is one of the most abundant biopolymers on earth. It is used as a nontoxic alternative in a wide range of medicines, packaging, adhesives, and flame retardants. Chitosan is poorly soluble in neutral or alkaline solutions, but it dissolves in solutions of weak acids, such as acetic acid or citric acid, both of which occur naturally.

View Article and Find Full Text PDF

Conventional carbon dots (CDs) typically exhibit substantial variations in fluorescence intensity across different pH. This limitation underscores the pressing need for advancements in their stability and performance under diverse environmental conditions. Herein, l-cysteine and neutral red are selected as precursors, and three kinds of CDs, which can emit red, orange, and green fluorescent light (assigned as r-CD, o-CD, g-CD, respectively), are synthesized by simply changing the reaction conditions.

View Article and Find Full Text PDF

Isolated Neutral Organic Radical Unveiled Solvent-Radical Interaction in Highly Reducing Photocatalysis.

Angew Chem Int Ed Engl

January 2025

The University of Arizona, Chemistry and BioChemistry, 1306 E University Blvd, CSML 638, 85719, Tucson, UNITED STATES OF AMERICA.

Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In-situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!