A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Supervised learning for analysing movement patterns in a virtual reality experiment. | LitMetric

Supervised learning for analysing movement patterns in a virtual reality experiment.

R Soc Open Sci

Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Nordrhein-Westfalen, Germany.

Published: April 2022

The projection into a virtual character and the concomitant illusionary body ownership can lead to transformations of one's entity. Both during and after the exposure, behavioural and attitudinal changes may occur, depending on the characteristics or stereotypes associated with the embodied avatar. In the present study, we investigated the effects on physical activity when young students experience being old. After assignment (at random) to a young or an older avatar, the participants' body movements were tracked while performing upper body exercises. We propose and discuss the use of supervised learning procedures to assign these movement patterns to the underlying avatar class in order to detect behavioural differences. This approach can be seen as an alternative to classical feature-wise testing. We found that the classification accuracy was remarkably good for support vector machines with linear kernel and deep learning by convolutional neural networks, when inserting time sub-sequences extracted at random and repeatedly from the original data. For hand movements, associated decision boundaries revealed a higher level of local, vertical positions for the young avatar group, indicating increased agility in their performances. This occurrence held for both guided movements as well as achievement-orientated exercises.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039785PMC
http://dx.doi.org/10.1098/rsos.211594DOI Listing

Publication Analysis

Top Keywords

supervised learning
8
movement patterns
8
learning analysing
4
analysing movement
4
patterns virtual
4
virtual reality
4
reality experiment
4
experiment projection
4
projection virtual
4
virtual character
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!