The influence of particle size (0.3 and 5.0 mm) and heating rate (5, 10, and 20 °C min) on the kinetic parameters of pyrolysis of waste tire was studied by thermogravimetric analysis and mathematical modeling. Kinetic parameters were determined using the Friedman model, the Coats-Redfern model, and the ASTM E1641 standard based on Arrhenius linearization. In the Friedman model, the activation energy was between 40 and 117 kJ mol for a particle size of 0.3 mm and between 23 and 119 kJ mol for a particle size of 5.0 mm. In the Coats-Redfern model, the activation energy is in a range of 46 to 87 kJ mol for a particle size of 0.3 mm and in a range of 43 to 124 kJ mol for a particle size of 5.0 mm. Finally, in the ASTM E1641 standard, the activation energy calculated was between 56 and 60 kJ mol for both particle sizes. This study was performed to obtain kinetic parameters from different mathematical methods, examining how the particle size and heating rate influence them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118263 | PMC |
http://dx.doi.org/10.1021/acsomega.1c06345 | DOI Listing |
Nanotechnology
January 2025
Nanjing Medical University, Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, 210029, CHINA.
Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.
View Article and Find Full Text PDFSci Adv
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).
View Article and Find Full Text PDFAssay Drug Dev Technol
January 2025
Institute of Pharmaceutical Research, GLA University, Mathura, India.
Med Oncol
January 2025
Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
This study presents nanostructured lipid carrier (NLC) co-loaded with Docetaxel (DCT) and 5-Fluorouracil (5-FU) as a targeted therapeutic approach for gastric cancer (GC). Using nanoprecipitation, NLC-DCT/5-FU were synthesized and exhibited an average particle size of 215.3 ± 10.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.
Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!