Internet of Medical Things (IoMT) is network of interconnected medical devices (smart watches, pace makers, prosthetics, glucometer, etc.), software applications, and health systems and services. IoMT has successfully addressed many old healthcare problems. But it comes with its drawbacks essentially with patient's information privacy and security related issues that comes from IoMT architecture. Using obsolete systems can bring security vulnerabilities and draw attacker's attention emphasizing the need for effective solution to secure and protect the data traffic in IoMT network. Recently, intrusion detection system (IDS) is regarded as an essential security solution for protecting IoMT network. In the past decades, machines learning (ML) algorithms have demonstrated breakthrough results in the field of intrusion detection. Notwithstanding, to our knowledge, there is no work that investigates the power of machines learning algorithms for intrusion detection in IoMT network. This paper aims to fill this gap of knowledge investigating the application of different ML algorithms for intrusion detection in IoMT network. The investigation analysis includes ML algorithms such as -nearest neighbor, Naïve Bayes, support vector machine, artificial neural network and decision tree. The benchmark dataset, Bot-IoT which is publicly available with comprehensive set of attacks was used to train and test the effectiveness of all ML models considered for investigation. Also, we used comprehensive set of evaluation metrics to compare the power of ML algorithms with regard to their detection accuracy for intrusion in IoMT networks. The outcome of the analysis provides a promising path to identify the best the machine learning approach can be used for building effective IDS that can safeguard IoMT network against malicious activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114823PMC
http://dx.doi.org/10.1007/s11227-022-04568-3DOI Listing

Publication Analysis

Top Keywords

iomt network
28
intrusion detection
20
detection iomt
12
iomt
10
machine learning
8
network
8
machines learning
8
learning algorithms
8
algorithms intrusion
8
comprehensive set
8

Similar Publications

Optimizing healthcare big data performance through regional computing.

Sci Rep

January 2025

Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates.

The healthcare sector is experiencing a digital transformation propelled by the Internet of Medical Things (IOMT), real-time patient monitoring, robotic surgery, Electronic Health Records (EHR), medical imaging, and wearable technologies. This proliferation of digital tools generates vast quantities of healthcare data. Efficient and timely analysis of this data is critical for enhancing patient outcomes and optimizing care delivery.

View Article and Find Full Text PDF

Side-Gated Iontronic Memtransistor: A Fast and Energy-Efficient Neuromorphic Building Block.

Small

January 2025

eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala, 695551, India.

Iontronic memtransistors have emerged as technologically superior to conventional memristors for neuromorphic applications due to their low operating voltage, additional gate control, and enhanced energy efficiency. In this study, a side-gated iontronic organic memtransistor (SG-IOMT) device is explored as a potential energy-efficient hardware building block for fast neuromorphic computing. Its operational flexibility, which encompasses the complex integration of redox activities, ion dynamics, and polaron generation, makes this device intriguing for simultaneous information storage and processing, as it effectively overcomes the von Neumann bottleneck of conventional computing.

View Article and Find Full Text PDF

Intelligent two-phase dual authentication framework for Internet of Medical Things.

Sci Rep

January 2025

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia.

The Internet of Medical Things (IoMT) has revolutionized healthcare by bringing real-time monitoring and data-driven treatments. Nevertheless, the security of communication between IoMT devices and servers remains a huge problem because of the inherent sensitivity of the health data and susceptibility to cyber threats. Current security solutions, including simple password-based authentication and standard Public Key Infrastructure (PKI) approaches, typically do not achieve an appropriate balance between security and low computational overhead, resulting in the possibility of performance bottlenecks and increased vulnerability to attacks.

View Article and Find Full Text PDF

Devices that function within a network of interconnected systems and are equipped with sensors, software, and tools designed to collect and exchange data are widely known as the Internet of Things (IoT). In recent years, the rapid growth of IoT technology has sparked significant interest in leveraging these systems to enhance healthcare delivery across various medical fields, including fertility care and assisted reproductive technology. The subset of IoT devices applied within the healthcare sector is referred to as the Internet of Medical Things (IoMT).

View Article and Find Full Text PDF

Feature efficiency in IoMT security: A comprehensive framework for threat detection with DNN and ML.

Comput Biol Med

January 2025

Computer Engineering Department, Technology Faculty, Marmara University, Maltepe, Istanbul, Turkey. Electronic address:

Background: To address critical security challenges in the Internet of Medical Things (IoMT), this study develops a feature selection framework to improve detection accuracy and computational efficiency in IoMT cybersecurity. By optimizing feature selection, the framework aims to enhance the security and operational integrity of real-time healthcare systems.

Method: This study integrates Random Subset Feature Selection (RSFS) with Correlation Feature Selection (CFS) to create a novel feature selection framework tailored to IoMT datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!