A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient Multiple Imputation for Sensitivity Analysis of Recurrent Events Data with Informative Censoring. | LitMetric

Missing data are commonly encountered in clinical trials due to dropout or nonadherence to study procedures. In trials in which recurrent events are of interest, the observed count can be an undercount of the events if a patient drops out before the end of the study. In many applications, the data are not necessarily missing at random and it is often not possible to test the missing at random assumption. Consequently, it is critical to conduct sensitivity analysis. We develop a control-based multiple imputation method for recurrent events data, where patients who drop out of the study are assumed to have a similar response profile to those in the control group after dropping out. Specifically, we consider the copy reference approach and the jump to reference approach. We model the recurrent event data using a semiparametric proportional intensity frailty model with the baseline hazard function completely unspecified. We develop nonparametric maximum likelihood estimation and inference procedures. We then impute the missing data based on the large sample distribution of the resulting estimators. The variance estimation is corrected by a bootstrap procedure. Simulation studies demonstrate the proposed method performs well in practical settings. We provide applications to two clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119645PMC
http://dx.doi.org/10.1080/19466315.2020.1819403DOI Listing

Publication Analysis

Top Keywords

recurrent events
12
multiple imputation
8
sensitivity analysis
8
events data
8
missing data
8
clinical trials
8
missing random
8
reference approach
8
data
6
efficient multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!