With the continuation of the Coronavirus Disease 2019 (Covid-19) pandemic, the impacts of this catastrophe on anthropogenic emissions are no longer limited to its early stage. This study quantitatively estimates effective radiative forcings (ERFs) due to anthropogenic well-mixed greenhouse gases (WMGHGs) and aerosols for the period 2020-2050 under the three latest Covid-19 economic-recovery scenarios using an aerosol-climate model. The results indicate that reductions in both WMGHG and aerosol emissions under the Covid-19 green recoveries lead to increases ranging from 0 to 0.3 W m in global annual mean anthropogenic ERF over the period 2020-2050 relative to the Shared Socioeconomic Pathway 2-4.5 scenario (the baseline case). These positive ERFs are mainly attributed to the rapid and dramatic decreases in atmospheric aerosol content that increase net shortwave radiative flux at the top of atmosphere via weakening the direct aerosol effect and low cloud cover. At the regional scale, reductions in aerosols contribute to positive ERFs throughout the Northern Hemisphere, while the decreased WMGHGs dominate negative ERFs over the areas away from aerosol pollution, such as the Southern Hemisphere oceans. This drives a strong interhemispheric contrast of ERFs. In contrast, the increased anthropogenic emissions under the fossil-fueled recovery scenario lead to an increase of 0.3 W m in global annual mean ERF in 2050 compared with the baseline case, primarily due to the contribution of WMGHG ERFs. The regional ERF changes are highly dependent on local cloud radiative effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111337PMC
http://dx.doi.org/10.1029/2021JD036251DOI Listing

Publication Analysis

Top Keywords

effective radiative
8
radiative forcings
8
anthropogenic emissions
8
period 2020-2050
8
03 w global
8
global annual
8
baseline case
8
positive erfs
8
erfs
6
anthropogenic
5

Similar Publications

A leaf-like structured membrane for highly efficient and persistent radiative cooling.

Mater Horiz

January 2025

Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.

Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges.

View Article and Find Full Text PDF

Efficient harvesting of triplet excitons multiple fast TTA up-conversion and high-lying reverse intersystem crossing channels for efficient blue fluorescent organic light-emitting diodes.

Chem Sci

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China

The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.

View Article and Find Full Text PDF

Wearable thermoelectric generator (TEG) can collect human body heat and convert it into electrical energy, achieving self-powering of the device and thus becoming a hot research topic at present. By utilization of three-dimensional spiral thin-film thermoelectric structures and passive radiation cooling methods, the heat transfer area can be increased and power generation can be enhanced. In order to study the effect of outdoor radiation cooling on the thermoelectric performance of spiral heating, as well as the TEG performance output under different external environments and circuit loads, this paper proposes a new three-dimensional coupled numerical model of the spiral thermoelectric wristband system with multiple physical fields.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!