Rapid screening and early treatment of lung infection are essential for effective control of many epidemics such as Coronavirus Disease 2019 (COVID-19). Recent studies have demonstrated the potential correlation between lung infection and the change of back skin temperature distribution. Based on these findings, we propose to use low-cost, portable and rapid thermal imaging in combination with image-processing algorithms and machine learning analysis for non-invasive and safe detection of pneumonia. The proposed method was tested in 69 subjects (30 normal adults, 11 cases of fever without pneumonia, 19 cases of general pneumonia and 9 cases of COVID-19) where both RGB and thermal images were acquired from the back of each subject. The acquired images were processed automatically in order to extract multiple location and shape features that distinguish normal subjects from pneumonia patients at a high accuracy of 93 . Furthermore, daily assessment of two pneumonia patients by the proposed method accurately predicted the clinical outcomes, coincident with those of laboratory tests. Our pilot study demonstrated the technical feasibility of portable and intelligent thermal imaging for screening and therapeutic assessment of pneumonia. The method can be potentially implemented in under-resourced regions for more effective control of respiratory epidemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106596 | PMC |
http://dx.doi.org/10.1016/j.infrared.2022.104201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!