Optimizing drug candidates for blood-brain barrier (BBB) penetration remains one of the key challenges in drug discovery to finally target brain disorders including neurodegenerative diseases which do not have adequate treatments so far. It has been difficult to establish state-of-the-art stem cell derived in vitro models that mimic physiological barrier properties including a 3D microvasculature in a format that is scalable to screen drugs for BBB penetration. To address this challenge, we established human induced pluripotent stem cell (iPSC)-derived brain endothelial microvessels in a standardized and scalable multi-well plate format. iPSC-derived brain microvascular endothelial cells (BMECs) were supplemented with primary cell conditioned media and grew to microvessels in 10 days. Produced microvessels show typical BBB endothelial protein expression, tight-junctions and polarized localization of efflux transporter. Microvessels exhibited physiological relevant trans-endothelial electrical resistance (TEER), were leak-tight for 10 kDa dextran-Alexa 647 and strongly limited the permeability of sodium fluorescein (NaF). Permeability tests with reference compounds confirmed the suitability of our model as platform to identify potential BBB penetrating anti-inflammatory drugs. The here presented platform recapitulates physiological properties and allows rapid screening of BBB permeable anti-inflammatory compounds that has been suggested as promising substances to cure so far untreatable neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2022.121525 | DOI Listing |
Noncoding RNA
January 2025
Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.
Aging leads to cognitive decline and increased risk of neurodegenerative diseases. While molecular changes in central nervous system (CNS) cells contribute to this decline, the mechanisms are not fully understood. Long non-coding RNAs (lncRNAs) are key regulators of cellular functions.
View Article and Find Full Text PDFBrain Inform
January 2025
Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
Calcium plays an important role in regulating various neuronal activities in human brains. Investigating the dynamics of the calcium level in neurons is essential not just for understanding the pathophysiology of neuropsychiatric disorders but also as a quantitative gauge to evaluate the influence of drugs on neuron activities. Accessing human brain tissue to study neuron activities has historically been challenging due to ethical concerns.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:
Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America.
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases.
View Article and Find Full Text PDFNeuron
January 2025
Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:
The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!