A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolation and Characterization of Phosphate Solubilizing Bacteria from Paddy Field Soils in Japan. | LitMetric

AI Article Synopsis

  • - Phosphorus is crucial for plant growth but can become insoluble in soil, leading to deficiencies, making microbial inoculants that release phosphorus from minerals important for agriculture.
  • - This study isolated inorganic phosphate solubilizing bacteria (iPSB) from rice fields in Japan, using selective media and sequencing for identification, and assessed their effectiveness on the rice cultivar Koshihikari.
  • - Three groups of iPSB were found, with most belonging to the β-Proteobacteria category, and several novel genera were identified; these bacteria showed potential for enhancing rice growth by utilizing insoluble phosphorus sources.

Article Abstract

Phosphorus (P) is abundant in soil and is essential for plant growth and development; however, it is easily rendered insoluble in complexes of different types of phosphates, which may lead to P deficiency. Therefore, increases in the amount of P released from phosphate minerals using microbial inoculants is an important aspect of agriculture. The present study used inorganic phosphate solubilizing bacteria (iPSB) in paddy field soils to develop microbial inoculants. Soils planted with rice were collected from different regions of Japan. Soil P was sequentially fractionated using the Hedley method. iPSB were isolated using selective media supplemented with tricalcium phosphate (Ca-P), aluminum phosphate (Al-P), or iron phosphate (Fe-P). Representative isolates were selected based on the P solubilization index and soil sampling site. Identification was performed using 16S rRNA and rpoB gene sequencing. Effectiveness was screened based on rice cultivar Koshihikari growth supplemented with Ca-P, Al-P, or Fe-P as the sole P source. Despite the relatively homogenous soil pH of paddy field sources, three sets of iPSB were isolated, suggesting the influence of fertilizer management and soil types. Most isolates were categorized as β-Proteobacteria (43%). To the best of our knowledge, this is the first study to describe the genera Pleomorphomonas, Rhodanobacter, and Trinickia as iPSB. Acidovorax sp. JC5, Pseudomonas sp. JC11, Burkholderia sp. JA6 and JA10, Sphingomonas sp. JA11, Mycolicibacterium sp. JF5, and Variovorax sp. JF6 promoted plant growth in rice supplemented with an insoluble P source. The iPSBs obtained may be developed as microbial inoculants for various soil types with different P fixation capacities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530731PMC
http://dx.doi.org/10.1264/jsme2.ME21085DOI Listing

Publication Analysis

Top Keywords

paddy field
12
microbial inoculants
12
phosphate solubilizing
8
solubilizing bacteria
8
field soils
8
plant growth
8
ipsb isolated
8
soil types
8
phosphate
6
soil
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!