Background: Non-alcoholic fatty liver disease (NAFLD) is known to be the most common liver disease in the world, and there are currently no approved pharmacological treatments to prevent or treat this condition. In addition to being associated with an increased risk of hepatocellular carcinoma and cirrhosis, NAFLD has now become the leading cause of liver failure-associated transplantation. The 16S rRNA gene which conserved regions can serve as universal primer binding sites for PCR amplification of gene fragments, while hypervariable regions contain significant sequence diversity useful for prokaryotic identification purposes. 16S rRNA gene sequences can be use by researchers to identify prokaryotic taxonomy found in clinical samples. As a result of increasing microbiota studies with developing technological developments, the role of intestinal microbiota in the pathogenesis of NAFLD is revealed in an important way. In this study, it was aimed to determine the clinical prognostic importance of gut microbiota in the pathogenesis of NAFLD and to determine the microbial composition with intestinal mucosal biopsy samples in NAFLD patients.

Material And Method: We included 20 patients diagnosed with NAFLD as a result of liver function tests, histological, ultrasonographic, biopsy evidence and 20 normal control groups created under exclusion criteria in this study. The healthy control group of the same age and gender as the patients were determined to be equal, and the age, gender, BMI, insulin resistance, AST, ALT levels of the individuals were recorded for analysis. İntestinal mucosal biopsy samples were taken from the individuals included in the study under sterile conditions. Microbial results were obtained as a result of 16S rRNA amplicon metagenomic processes. The region of approximately 1500 bp covering the V1-V9 region of the 16S rRNA gene was targeted to detect microbial diversity. The amplified regions were sequenced using next-generation sequencing. Operational Taxonomic Unit (OTU) value was obtained with bioinformatics software with the obtained sequence data. The analysis of the recorded parameters was done with the SPSS.19 statistical program.

Results: In the designed study, 16 phyla, 28 class, 56 order, 128 family, 415 genera, 1041 species microorganisms were analyzed taxonomically in a total of 40 individuals. In our study, Intestinal microbial diversity is lower in NAFLD patients compared to control group individuals. In addition, gram-negative bacteria were found to be more dominant in NAFLD patients. As a phylum, Proteobacteria increased in NAFLD group, Bacteroidetes and Actinobacteria in control group, while Firmicutes had equal distribution in both groups. BMI OR = 6.37, 95 %CI (0.39-0.40) p value was 0.001 in laboratory data, whereas Proteobacteria OR = 1.754, 95% CI (0.901-3.416), p value 0.05 in microbial profile.

Conclusion: The 16S rRNA metagenomic study of intestinal microbiota using colonic mucosal biopsy samples in NAFLD disease was the first study in the Turkish population, and important data were obtained for other studies. In the data obtained, we think Proteobacteria, Ruminococcaceae, Escherichia coli and Bacilli are very important in both diagnostic and treatment options as a microbial profile in NAFLD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146587DOI Listing

Publication Analysis

Top Keywords

16s rrna
20
mucosal biopsy
16
biopsy samples
16
liver disease
12
rrna gene
12
control group
12
nafld
11
gut microbiota
8
colonic mucosal
8
non-alcoholic fatty
8

Similar Publications

Background And Aims: Oral microbiota may contribute to the development of upper gastrointestinal (UGI) disorders. We aimed to study the association between the microbiome of saliva, subgingival and buccal mucosa, and UGI disorders, particularly precancerous lesions. We also aimed to determine which oral site might serve as the most effective biomarker for UGI disorders.

View Article and Find Full Text PDF

Biliary stent occlusion is due, in part, to biofilm formation by bacteria. However, previous culture-based approaches may not have revealed all microorganisms on the surface. Twenty-seven patients underwent endoscopic retrograde biliary drainage for the removal or replacement of plastic biliary stents.

View Article and Find Full Text PDF

Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.

View Article and Find Full Text PDF

Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.

View Article and Find Full Text PDF

Objectives: The aim of the study was to explore the alteration of microbiota and SCFA in gut and inflammation in acute exacerbation chronic obstructive pulmonary disease (AECOPD) patients, and to test the hypothesis that a disorder of gut microbiota will lead to the alteration of SCFA, which will aggravate inflammation in AECOPD patients.

Methods And Results: 24 patients with AECOPD and 18 healthy volunteers were included in the study. Gut microbiota were analyzed by 16S rDNA and serum was used to detect levels of inflammatory factors by ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!