The removal of radioactive contaminants from aquifers is a matter of great concern. In this paper, coated copper-based nanoparticles (Cu-based NPs) were investigated as sorbent materials to remove uranium and thorium from low-level wastes, and especially from water, considering the influences of temperature, time, concentration, and pH. Cu-based NPs were derived through a hydrothermal synthesis from copper nitrate degradation in the presence of the bifunctional with COOH-terminated PEG, TEG as well as PEG 8000. The characterization was undertaken using XRD, TEM, TG/DTG, FTIR, and SEM-EDS. Isotherm models such as Langmuir and Freundlich were applied, while kinetic data were successfully reproduced by the pseudo-second-order equation and thermodynamic parameters were calculated. To investigate the removal mechanisms, UV-fluorescence and X-ray photoelectron spectroscopy were used. In the case of uranium, the predominant mechanism includes the formation of surface complexes, followed by extensive reduction (65%) of U(VI) to less soluble U(IV) while in the case of thorium, surface precipitation dominates. Copper nanoparticles exhibited significant U(VI) uptake capacity resulting in a decrease of the U-concentration below the acceptable limit of 30 μg/L and can be successfully applied in water treatment technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156050 | DOI Listing |
Int J Radiat Biol
January 2025
Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil.
Background: Ionizing radiation can inflict cellular damage, the severity of which is determined by the dose, exposure duration, and its capacity to penetrate cells. Some studies have demonstrated that genetic and epigenetic mechanisms have enabled organisms to develop adaptive traits and enhance their ability to repair DNA damage. Northeastern Brazil, a region containing rocky outcrops rich in uranium and thorium, is an ideal scenario to study natural radiation and its effects on natural populations.
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
Department of Applied Physic, ETS Arquitectura, University of Seville, 41013, Sevilla, Spain.
Arid and semi-arid climates give rise to drought stress in plants, implying an increased uptake of radionuclides through both leaves and roots. This study was carried out in the Tabernas Desert (Almería, Spain), classified as an arid climate. Seventeen plants were analyzed, collected from four areas of the study site.
View Article and Find Full Text PDFFront Chem
November 2024
Department of Inorganic Chemistry, University of Vienna, Vienna, Austria.
We synthesized and characterized a novel, task-specific ionic liquid for metal extraction with considerably reduced leaching behavior compared to similar, phosphonium-based ionic liquids. The synthesis involves the design of the novel compound [TOPP][PAM] featuring both a highly hydrophobic cation and a functional anion. The characterization of the novel ionic liquid confirmed the formation of the desired structure and sufficient purity.
View Article and Find Full Text PDFJ Adv Vet Anim Res
September 2024
Faculty of Veterinary Medicine, Firat University, Elazığ, Türkiye.
Objective: In the current study, we aimed to ascertain the levels of heavy metals and radioactive elements in the ovarian follicular fluids of pregnant and non-pregnant Kyrgyz mares.
Materials And Methods: To this end, follicular fluids were obtained from 49 Kyrgyz mares aged 3-5 years. The mares were in various stages of pregnancy (Group 1, 27) or were non-pregnant (Group 2, 22).
J Environ Radioact
January 2025
National Radiation Protection Institute (SURO), Bartoškova 28, 140 00, Prague, Czech Republic.
In the Czech Republic, underground or mixed source water treatment plants are classified as the workplaces with possible increased exposure from a natural source of radiation. When releasing waste materials or residues from these NORM workplaces into the environment, the content of natural radionuclides is measured and compared with the clearance levels established by Czech legislation. The content of natural radionuclides in solid samples is determined primarily by high-resolution gamma-ray spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!