Bacteria of the genus Wolbachia are endosymbionts of parasitic filarial nematodes, including Dirofilaria immitis, and are a target for the treatment of canine heartworm disease. In the present study, 53 naturally-infected dogs were divided in three groups, based on their positivity to D. immitis by antigen and Knott tests, to assess the efficacy of doxycycline treatment in eliminating Wolbachia from circulating blood. At T0, dogs that scored positive to both tests (G1) or to antigen only (G2) were submitted to doxycycline (10 mg/kg BID PO) treatment and to 10% Imidacloprid + 2.5% Moxidectin (Advocate®), while those negative to both tests (G3) received only 10% Imidacloprid + 2.5% Moxidectin (Advocate®). All dogs were followed-up for one year, monthly treated with Advocate® and regularly monitored by antigen and Knott tests. During the whole period, all blood samples were screened for Wolbachia-D. immitis DNA load by quantitative real-time PCR (qPCR). At T0, 88.2% of the microfilariemic dogs were positive for Wolbachia DNA, while none of the dogs from G2 or G3 were positive. Wolbachia DNA was no longer detectable in dogs from G1 following 1 month of doxycycline treatment and microfilariae (mfs) were cleared at T2. All dogs from the G1 and G2 were negative for D. immitis antigen at 12 months. Results of this study suggest that successful elimination of mfs by doxycycline is associated with complete clearance of Wolbachia DNA in D. immitis-naturally infected dogs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2022.106513DOI Listing

Publication Analysis

Top Keywords

wolbachia dna
16
dogs
9
doxycycline associated
8
associated complete
8
complete clearance
8
immitis-naturally infected
8
infected dogs
8
immitis antigen
8
antigen knott
8
knott tests
8

Similar Publications

Phylogeographic analyses reveal recent dispersal and multiple Wolbachia infections of the bright-eyed ringlet Erebia oeme within the European mountain systems.

Sci Rep

January 2025

Senckenberg Deutsches Entomologisches Institut, Systematik und Biogeographie, Eberswalder Str. 90, 15374, Müncheberg, Germany.

The genus Erebia comprises numerous species in Europe. Due to preference of cold environments, most species have disjunct distributions in the European mountain systems. However, their biogeographical patterns may differ significantly.

View Article and Find Full Text PDF

The genome of the solitary bee Tetrapedia diversipes (Hymenoptera, Apidae).

G3 (Bethesda)

December 2024

Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil.

Tetrapedia diversipes is a Neotropical solitary bee commonly found in trap-nests, known for its morphological adaptations for floral oil collection and prepupal diapause during the cold and dry season. Here, we present the genome assembly of T. diversipes (332 Mbp), comprising 2,575 scaffolds, with 15,028 predicted protein-coding genes.

View Article and Find Full Text PDF

Counting rare endosymbionts using digital droplet PCR.

bioRxiv

December 2024

Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA.

is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, is at the vanguard of public health initiatives to control mosquito-borne diseases. 's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues.

View Article and Find Full Text PDF

Introduction: , a parasite on the body surface of sheep, directly attacks the host through biting and sucking blood and may also transmit pathogens in the process. There are currently only a few studies on the microbial composition of , while there are no such studies on pupae.

Methods: In this study, samples AT-1 to AT-4 each contained four individuals, while sample AT-5 comprised four pupae, all used for metagenomic sequencing and analysis.

View Article and Find Full Text PDF

Background: Culex tritaeniorhynchus, a major vector of Japanese encephalitis virus (JEV), is found across a broad geographical range, including Africa, Asia, Australia and Europe. Understanding the population structure and genetic diversity of pathogen vectors is increasingly seen as important for effective disease control. In China and Japan, two countries in close proximity to the Republic of Korea (ROK), Cx.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!