Hypothesis: The accurate determination of viscosity and interfacial tension by surface light scattering (SLS) represents a challenging task, especially in the range of small wave vectors. Here, measurements are subjected to line-broadening effects, which are often not adequately described by empirical fitting routines in literature.
Experiments: For tackling this limitation, a novel evaluation strategy relying on a Monte-Carlo-based optimization is suggested in the present study. Without making prior assumptions about the underlying distribution of wave vectors, the method allows to decompose the measured SLS signal into a superposition of individual contributions represented by damped oscillations. The resulting amplitude distribution for damping and frequency is used to estimate the central wave vector, all of which is required to solve the dispersion relation for hydrodynamic surface fluctuations in its exact form.
Findings: By applying the evaluation strategy to SLS signals recorded in reflection direction for the reference fluid toluene, it is demonstrated that the presented concept provides a route towards an accurate determination of viscosity and surface tension in the range of small wave vectors. Hence, the strategy is considered to extend the application range of SLS in connection with opaque and non-transparent fluids for which small wave vectors often need to be probed experimentally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.05.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!