Algal bloom forecasting with time-frequency analysis: A hybrid deep learning approach.

Water Res

Ocean College, Zhejiang University, #1 Zheda Road, Zhoushan, Zhejiang 316021, China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China. Electronic address:

Published: July 2022

The rapid emergence of deep learning long-short-term-memory (LSTM) technique presents a promising solution to algal bloom forecasting. However, the discontinuous and non-stationary processes within algal dynamics still largely limit the functions of LSTMs. To overcome this challenge, an advanced time-frequency wavelet analysis (WA) technique was introduced to enhance the prediction accuracy of LSTMs. Herein, the novel hybrid approach (named WLSTM) successfully decreased the algal forecasting inaccuracy of classic LSTMs by 41% ± 8% in Lake Mendota (Wisconsin, USA), with powerful one-step-ahead predictions at hourly, daily, and monthly time resolutions (R = 0.976, 0.878, and 0.814, respectively). In addition, the WLSTM outperformed the other two widely used algal forecasting approaches - deep neural network (DNN), and autoregressive-integrated-moving-average (ARIMA) model, represented by average 72% and 85% decrease in root-mean-square-error, respectively. Furthermore, the WLSTM was implemented in an experimentally fertilized lake (Lake Tuesday, Michigan) for a multi-step forecasting examination. It satisfactorily forecasted the algal fluctuations involving substantial peak and extreme values (average R > 0.900) and presented accurate judgment outcomes to their bloom levels with high accuracy > 95% on average. This work highlighted the utility of deep learning approaches in effective early-warning for algal blooms, and demonstrated an important direction for improving the adaptability of conventional deep learning approaches to the aquatic problems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118591DOI Listing

Publication Analysis

Top Keywords

deep learning
16
algal bloom
8
bloom forecasting
8
algal forecasting
8
learning approaches
8
algal
7
forecasting
5
deep
5
forecasting time-frequency
4
time-frequency analysis
4

Similar Publications

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients.

Pediatr Cardiol

January 2025

Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.

Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.

Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!