Characterization and complete genome analysis of a novel Escherichia phage, vB_EcoM-RPN242.

Arch Virol

Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000, Thailand.

Published: August 2022

The novel Escherichia phage vB_EcoM-RPN242 was isolated using a strain of Escherichia coli originating from a diarrheic piglet as a host. The phage was able to form plaques on the E. coli lawn at 15-45 °C. Moreover, it was stable over a wide pH (4-10) and temperature (4-70 °C) range. The vB_EcoM-RPN242 genome was found to be a linear, double-stranded DNA consisting of 154,840 base pairs. There were 195 protein-encoding genes and two tRNAs detected in the genome; however, no genes associated with virulence, toxins or antimicrobial resistance were found. According to overall nucleotide sequence comparisons, vB_EcoM-RPN242 possibly represents a new species in the genus Agtrevirus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-022-05479-7DOI Listing

Publication Analysis

Top Keywords

novel escherichia
8
escherichia phage
8
phage vb_ecom-rpn242
8
characterization complete
4
complete genome
4
genome analysis
4
analysis novel
4
vb_ecom-rpn242
4
vb_ecom-rpn242 novel
4
vb_ecom-rpn242 isolated
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.

View Article and Find Full Text PDF

Background/objectives: Dysgeusia contributes to malnutrition and worsens the quality of life of patients with cancer. Despite the different strategies, there is no effective treatment for patients suffering from taste disorders provided by the pharmaceutical industry. Therefore, we developed a novel strategy for reducing side effects in cancer patients by providing a novel food supplement with the taste-modifying glycoprotein miraculin, which is approved by the European Union, as an adjuvant to medical-nutritional therapy.

View Article and Find Full Text PDF

Background/objectives: Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC.

View Article and Find Full Text PDF

As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!