A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

αvβ3-targeted sEVs for efficient intracellular delivery of proteins using MFG-E8. | LitMetric

αvβ3-targeted sEVs for efficient intracellular delivery of proteins using MFG-E8.

BMC Biotechnol

College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Published: May 2022

Background: Small extracellular vesicles (sEVs) are nanometer-sized membranous particles shed by many types of cells and can transfer a multitude of cargos between cells. Recent studies of sEVs have been focusing on their potential to be novel drug carriers due to natural composition and other promising characteristics. However, there are challenges in sEVs-based drug delivery, one of which is the inefficient loading of drugs into sEVs, especially for large biomolecules.

Results: In this study, we proposed a membrane-associated protein, milk fat globule-epidermal growth factor 8 protein (MFG-E8), to produce αvβ3-targeted sEVs with high delivery efficiency of interested protein. MFG-E8 is a secreted protein with NH2-terminal epidermal growth factor (EGF)-like domains, containing an Arg-Gly-Asp(RGD) sequence that binds αvβ3 and αvβ5 integrins, and COOH terminal domains C1 and C2, which can bind to lipid membrane with strong affinity. Firstly, we transiently expressed MFG-E8 in HEK293F cells and found that this protein could be secreted and adhere to the cell membrane. The recombinant MFG-E8 is also found to locate at the outer membrane of sEVs. Then we generated engineered sEVs by expressing high levels of the EGFP fused to MFG-E8 in HEK293F cells and showed that MFG-E8 could increase the delivery efficiency of EGFP into sEVs. Further delivery of Gaussia luciferase (GL) by fusion expression with MFG-E8 in donor cells demonstrated that target proteins fused with MFG-E8 still kept their activity. Finally, we identified the sEVs' target to integrin αvβ3 by comparing the transfection efficiency with MFG-E8 loaded sEVs (MFG-E8-sEVs) in αvβ3 positive cells and αvβ3 negative cells. Analysis showed higher target protein could transfect into αvβ3 positive cells with MFG-E8-sEVs than with EGFP loaded sEVs (EGFP-sEVs), meaning the engineered sEVs with MFG-E8 not only could increase the delivery of target protein into sEVs, but also could target the αvβ3 positive cells.

Conclusion: This study suggests that recombinant MFG-E8 is an ideal protein to increasingly deliver the drug into sEVs and give sEVs the ability to target the αvβ3 positive cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123705PMC
http://dx.doi.org/10.1186/s12896-022-00745-7DOI Listing

Publication Analysis

Top Keywords

αvβ3 positive
16
mfg-e8
12
sevs
12
positive cells
12
cells
9
αvβ3-targeted sevs
8
protein
8
growth factor
8
protein mfg-e8
8
delivery efficiency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!