Diclazuril (DIC) is widely used in the poultry industry to control coccidiosis. However, drug resistance makes it less effective, and the underlying mechanism remains unclear. One DIC-resistant E. tenella (RE) isolate and one sensitive E. tenella (SE) isolate were used to compare the differences in their endogenous development, pathogenicity, invasion-related gene expression and apoptotic characteristics. Chickens were allocated into four groups to receive RE or SE strain and their corresponding DIC treatment or not. Caeca tissues were sampled at 96 h, 120 h and 144 h post-infection (PI) for pathological analysis. Meanwhile, second-generation merozoites (Mz2) were separated at 120 h PI to detect alterations in mitochondrial membrane potential (MMP), apoptotic rate and caspase-3 activity and mRNA expression of protein phosphatase 5 (PP5), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), actin depolymerizing factor (ADF) and microneme proteins (MICs). Haematoxylin and eosin staining revealed that DIC treatment strictly blocked the development of the SE strain but slightly affected the RE strain. Meanwhile, the number of SE Mz2 and their MMP decreased at the same time the apoptotic rate increased after DIC treatment. Real-time quantitative PCR and caspase-3 activity studies demonstrated that Mz2 from the RE strain had higher mRNA expression of ADF and MICs along with no significant changes in GAPDH and caspase-3 activity under DIC pressure compared to its control; in contrast, the mRNA expression of ADF, MICs and PP5 was markedly suppressed in Mz2 from SE with upregulated caspase-3 activity and GAPDH transcription. In addition, the mRNA expression of GAPDH and PP5 in Mz2 from RE was remarkably higher than that of SE. Taken together, the higher mRNA expression of invasion-related genes and almost unaffected endogenous development provide a better understanding of coccidian resistance to DIC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetpar.2022.109719 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
World J Diabetes
January 2025
Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.
Aim: To explore the impact of MIZ on diabetic nephropathy (DN).
Methods: Diabetic mice were created using db/db mice.
ACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup, Assam 781101, India.
Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!