The use of umbilical cord-derived mesenchymal stem cells along with three-dimensional (3D) scaffolds in pancreatic tissue engineering can be considered as a treatment for diabetes. This study aimed to investigate the differentiation of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into pancreatic islet-insulin producing cells (IPCs) on silk/gelatin nanofibers as a 3D scaffold. Mesenchymal markers were evaluated at the mesenchymal stem cells (MSCs) level by flow cytometry. WJ-MSCs were then cultured on 3D scaffolds and treated with a differential medium. Immunocytochemical assays showed efficient differentiation of WJ-MSCs into IPCs. Also, Real-time PCR results showed a significant increase in the expression of pancreatic genes in the 3D culture group compared to the two-dimensional (2D) culture group. Despite these cases, the secretion of insulin and C-peptide in response to different concentrations of glucose in the 3D group was significantly higher than in the 2D culture. The results of our study showed that silk/gelatin scaffold with WJ-MSCs could be a good option in the production of IPCs in regenerative medicine and pancreatic tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2022.146586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!