New-generation antiepileptic drugs as perampanel, rufinamide and stiripentol emerged as alternatives in chronic epilepsy polytherapy. Hence, their metabolic stability and potential involvement in relevant drug-drug interactions (DDI) are of great clinical interest, being HepaRG cells herein used as an in vitro human model. To characterize their metabolic stability profiles, HepaRG cells were incubated with perampanel (1 μM), rufinamide (100 μM) or stiripentol (5 μM) for 12-h. HepaRG cells, pretreated with known CYP450 isoenzymes inducers (rifampicin, phenytoin, phenobarbital, omeprazole and carbamazepine), were also incubated with perampanel, rufinamide or stiripentol to assess possible DDI mediated by CYP450 induction. Results suggest a considerable decrease in perampanel and stiripentol concentrations over 12-h; contrary, rufinamide concentrations did not variated. Cells pretreatment with all inducers significantly decreased stiripentol concentrations (between 20.3% and 31.9%), suggesting a considerable potential for DDI. Rufinamide concentrations only decreased when preincubated with rifampicin and with the highest tested concentrations of the remaining inducers. Perampanel levels decreased with rifampicin, carbamazepine and phenobarbital, supporting the involvement of CYP3A4-mediated metabolism. Besides relevant information concerning the metabolic stability profile and potential DDIs of the new antiepileptics here studied, it was also reinforced the HepaRG cells suitability as a reliable in vitro model to foresee in vivo metabolism in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2022.105389 | DOI Listing |
Toxics
November 2024
The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.
Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.
View Article and Find Full Text PDFArch Toxicol
December 2024
Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance.
View Article and Find Full Text PDFMicrobes Infect
December 2024
Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Virology, Helmholtz Zentrum München, Munich, Germany. Electronic address:
Human endogenous retroviruses (HERVs), which are normally silenced by methylation or mutation, can be reactivated by a variety of environmental factors, including infection with exogenous viruses. In this work, we investigated the transcriptional activity of HERVs following infection of human liver cells (HepaRG) with human adenovirus C serotype 5 (HAdV-C5). HAdV-C5 infection results in reactivation of several HERV groups as well as differentially expressed genes.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada.
L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.
View Article and Find Full Text PDFNutrients
December 2024
Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!