It has been reported that hydrophilic nano-silica (N) markedly improved direct compaction (DC) properties of Zingiberis Rhizoma alcoholic extract. This study aims to examine the broader scope and generality of the previous work by investigating (i) three powders, i.e., the directly pulverized product, ethanol extract, and water extract prepared from the same medicinal herb-Puerariae Lobatae Radix (named DP, EE, and WE) and (ii) the effects on their DC properties of co-processing with N, hydrophobic nano-silica (BN), or microcrystalline cellulose (C). Unexpectedly, C provided the best improvement on tabletability for WE, while N for both DP and EE. More importantly, only N could move all parent powders to a regime suitable for DC, and BN rather than C enabled parent WE to be directly compressed. Typically, 6/9 N-modified powders simultaneously met the requirements of DC on bulk density, flowability, and tablet tensile strength (σ). Principal component analysis indicated that DC properties were mainly governed by flowability and texture properties. The partial least-squares regression model revealed that flowability, texture parameters, and deformation behavior of powders were dominating factors impacting tablet σ and solid fraction. Overall, the findings are promising for the manufacture of high drug loading tablets of herbs by DC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.121837 | DOI Listing |
Phys Rev Lett
December 2024
Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland.
We performed the first simulations of accretion onto the compact objects in the Reissner-Nordström (RN) space-time. The results obtained in general relativity are representative of those for spherically symmetric naked singularities and black holes in a number of modified gravity theories. A possible application of these calculations is to the active galactic nuclei with their powerful jets and outflows.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
Direct ink writing is a 3D printing method that is compatible with a wide range of structural, elastomeric, electronic, and living materials, and it continues to expand its uses into physics, engineering, and biology laboratories. However, the large footprint, closed hardware and software ecosystems, and expense of commercial systems often hamper widespread adoption. This work introduces a compact, low-cost, multimaterial, and high-throughput direct ink writing 3D printer platform with detailed assembly files and instructions provided freely online.
View Article and Find Full Text PDFSci Rep
January 2025
Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, Symbiosis Institute of Technology, Symbiosis University Pune, Pune, India.
A novel approach is introduced for designing a miniaturized wearable antenna. Utilizing Taguchi's philosophy typically entails numerous experimentations runs, but our method significantly reduces these by employing a quasi-Newton approach with gradient descent to estimate process parameter ranges. This hybrid technique expedites convergence by streamlining experiments.
View Article and Find Full Text PDFFood Chem
December 2024
School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, Qingdao 266071, China; Qingdao University - Aliben Science & Technology Collaborative Instrument R&D Center, Qingdao 266071, China. Electronic address:
A novel, compact, and automated laser ablation dielectric barrier discharge thin layer chromatography-mass spectrometry (LA-DBD-TLC-MS) device was developed for the rapid detection of biogenic amines (BAs) in fishery products. This plug-and-play system integrates thermal desorption via diode laser, DBD plasma ionization, and tandem MS detection, with key operational parameters optimized through experimental and computational methods. Utilizing nanoscale carbon black as a matrix, the device achieved a detection limit of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!