Permafrost degradation is accelerating beneath the bottom of Yanhu Lake in the Hoh Xil, Qinghai-Tibet Plateau.

Sci Total Environ

Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.

Published: September 2022

AI Article Synopsis

  • Lakes on the Qinghai-Tibet Plateau have expanded significantly over the last 20 years, leading to the submergence of surrounding permafrost.
  • Yanhu Lake, in particular, showed an average water level rise of 2.87 m per year from 2016 to 2019, causing cold permafrost to partially submerge by the end of 2017.
  • A numerical heat conduction model predicts that submerged permafrost will continue to degrade due to lake water's thermal impact, potentially leading to talik thicknesses of up to 19 m by 2100 under warmer conditions.

Article Abstract

Lakes on the Qinghai-Tibet Plateau (QTP) have notably expanded over the past 20 years. Due to lake water level rise and lake area expansion, the permafrost surrounding these lakes is increasingly becoming submerged by lake water. However, the change process of submerged permafrost remains unclear, which is not conducive to further analyzing the environmental effects of permafrost change. Yanhu Lake, a tectonic lake on the QTP, has experienced significant expansion and water level rise. Field measurement results indicate that the water level of Yanhu Lake increased by 2.87 m per year on average from 2016 to 2019. Cold permafrost, developed in the lake basin, was partially submerged by lake water at the end of 2017. Based on the water level change and permafrost thermal regime, a numerical heat conduction permafrost model was employed to predict future changes in permafrost beneath the lake bottom. The simulated results indicate that the submerged permafrost would continuously degrade because of the significant thermal impact of lake water. By 2100, the maximum talik thicknesses could reach approximately 7, 12, 16, and 19 m under lake-bottom temperatures of +2.0, +4.0, +6.0, and +8.0 °C, respectively. Approximately 291 years would be required to completely melt 47 m of submerged permafrost under the lake-bottom temperature of +4 °C. Note that the permafrost table begins to melt earlier than does the permafrost base, and the decline in the permafrost table occurs relatively fast at first, but then the process is attenuated, after which the permafrost table again rapidly declines. Compared to climate warming, the degradation of the submerged permafrost beneath the lake bottom occurred more rapidly and notably.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.156045DOI Listing

Publication Analysis

Top Keywords

lake water
16
water level
16
submerged permafrost
16
permafrost
15
lake
12
yanhu lake
12
permafrost table
12
qinghai-tibet plateau
8
level rise
8
submerged lake
8

Similar Publications

Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.

View Article and Find Full Text PDF

Unlabelled: Snow algae darken the surface of snow, reducing albedo and accelerating melt. However, the impact of subsurface snow algae (e.g.

View Article and Find Full Text PDF

The designated uses of lakes connect individuals to the natural environment, but some can expose recreational users to pathogens associated with fecal contamination that cause waterborne illnesses. Routine monitoring of fecal indicators in surface waters helps identify and track sources of fecal contamination to protect public health. We examined fecal indicators ( and enterococci) and factors influencing recreational freshwater quality.

View Article and Find Full Text PDF

The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.

View Article and Find Full Text PDF

Historic copper mining left a legacy of metal-rich tailings resulting in ecological impacts along and within Torch Lake, an area of concern in the Keweenaw Peninsula, Michigan, USA. Given the toxicity of copper to invertebrates, this study assessed the influence of this legacy on present day nearshore aquatic and terrestrial ecosystems. We measured the metal (Co, Cu, Ni, Zn, Cd) and metalloid (As) concentrations in sediment, pore water, surface water, larval and adult insects, and two riparian spider taxa collected from Torch Lake and a nearby reference lake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!